用functools.lru_cache实现Python的Memoization 现在你已经看到了如何自己实现一个memoization函数,我会告诉你,你可以使用Python的functools.lru_cache装饰器来获得相同的结果,以增加方便性。 我最喜欢Python的原因之一就是它的语法的简洁和美丽与它的哲学的美丽和简单性并行不悖。Python被称作“内置电池(batteries included)”,这意味着Python捆绑了大量常用的库和模块,这些只需要一个import声明! 我发现funct
在编写程序时,经常会遇到需要计算某个函数的输出,然后在稍后的代码中多次使用该输出的情况。
接下来我们引入functools模块的lru_cache,python3自带模块。
在计算机软件领域,缓存(Cache)指的是将部分数据存储在内存中,以便下次能够更快地访问这些数据,这也是一个典型的用空间换时间的例子。一般用于缓存的内存空间是固定的,当有更多的数据需要缓存的时候,需要将已缓存的部分数据清除后再将新的缓存数据放进去。需要清除哪些数据,就涉及到了缓存置换的策略,LRU(Least Recently Used,最近最少使用)是很常见的一个,也是 Python 中提供的缓存置换策略。
众所周知,Python 语言灵活、简洁,对程序员友好,但在性能上有点不太令人满意,这一点通过一个递归的求斐波那契额函数就可以说明:
LRU LRU (Least Recently Used) 是缓存置换策略中的一种常用的算法。当缓存队列已满时,新的元素加入队列时,需要从现有队列中移除一个元素,LRU 策略就是将最近最少被访问的元素移除,从而腾出空间给新的元素。
平时常听说使用redis做缓存,但是redis换缓存存放的是结果数据,从Python 的 3.2 版本开始,引入了一个非常优雅的缓存机器
很简单,也很容易理解,但是不难发现这个函数在计算斐波那契数列的时候事实上进行了很多重复计算,例如:
能看到这篇文章的同学,应该都对缓存这个概念不陌生,CPU中也有一级缓存、二级缓存和三级缓存的概念。缓存可以解决哪些问题?我们直接把网上的一段话放上来:
如果有会经常变化的设置项,也许在不同的环境中,将它们放在一个文件中,然后从文件中读取它们,就好像它们是环境变量一样
在软件开发中,缓存是一种常用的技术,用于提高系统性能和响应速度。Python提供了多种缓存技术和库,使我们能够轻松地实现缓存功能。本文将带您从入门到精通,逐步介绍Python中的缓存使用方法,并提供实例演示。
最近看到几个非常实用的 Python 库,它们太优秀了,让我忍不住分享,我相信在今后的编程之路上,你有很大的概率会使用它们,请先看一下,在大脑中先留下印象,方便以后拿来使用。
之前我在学 Python 的时候,第一次觉得它慢是执行一个递归函数,来求斐波那契数列,计算第 40 个数就需要 37 秒,同样的逻辑使用 java,则不到 1 秒就执行完毕。以下是在 IPython 环境下的运行耗时:
在一日一技:实现函数调用结果的 LRU 缓存一文中,我们提到Python自带的LRU缓存lru_cache。通过这个装饰器可以非常轻松地实现缓存。
递归是指函数/过程/子程序在运行过程序中直接或间接调用自身而产生的重入现象。在计算机编程里,递归指的是一个过程:函数不断引用自身,直到引用的对象已知。使用递归解决问题,思路清晰,代码少。但是在 Python 中,使用递归会消耗很大的空间,可能还会产生大量的重复的计算。所以我们应该想办法消除递归,下面我以斐波那契序列为例讲解几种消除递归的方法。
LRU (Least Recently Used) 是缓存置换策略中的一种常用的算法。当缓存队列已满时,新的元素加入队列时,需要从现有队列中移除一个元素,LRU 策略就是将最近最少被访问的元素移除,从而腾出空间给新的元素。
在工程项目中,可能有一些函数调用耗时很长,但是又需要反复多次调用,并且每次调用时,相同的参数得到的结果都是相同的。在这种情况下,我们可能会使用变量或者列表来存放,例如:
Python 标准库中的functools和itertools模块,提供了一些函数式编程的工具函数。
装饰器是应用“Python 之禅”哲学的最佳 Python 特性。装饰器可以帮助您编写更少、更简单的代码来实现复杂的逻辑并在任何地方重用它。
缓存是一种将定量数据加以保存以备迎合后续请求的处理方式,旨在加快数据的检索速度。在今天的文章中,我们将一同从简单示例出发,了解如何使用缓存机制。在此之后,我们将进一步利用Python标准库的funct
此前的文章中,我们介绍过常见两种缓存架构 — 穿透型缓存与旁路型缓存。 常见缓存架构 — 穿透型缓存与旁路型缓存
https://leetcode-cn.com/problems/fibonacci-number/
在N篇文档中查找包含 X 单词的所有文档 [doc for doc in docs if 'X' in doc] 当N非常大的时候这样的效率是很低的
对于在棋盘格/岛屿陆地/矿洞等地图上跳来跳去的问题,都可以优先尝试使用dfs。我们要算骑士留在棋盘上的概率,就需要先找到不满足的边界条件:在做dfs时跳出棋盘即横纵坐标小于0或者大于最大长度时,表明骑士离开了棋盘;假设骑士在棋盘内且k=0时,骑士一定留在棋盘上,概率为1。
作者:Yang Zhou 翻译:陈之炎 校对:赵茹萱 本文约2000字,建议阅读8分钟本文介绍了精心挑选的9个函数装饰器,它将展示Python的优雅。 函数装饰器有事半功倍的力量。 Wallhaven 提供 图片 “简胜于繁。” Python函数装饰器是“Python zen”哲学的最佳特性。 装饰器助力用更少、更简单的代码来实现复杂的逻辑,并在其他地方实现重用。 有许多很棒的内置Python装饰器使编码变得更为容易,只使用一行代码便可向当前的函数或类中添加复杂的函数。 行胜于言,接下来,来看看精心挑选的
第二个值得学习的结构模式是装饰器模式,它允许程序员以透明的方式(影响其他对象)动态地给对象增加能力。
这一题其实就是题目有点长,思路倒是很直接,按照题意构建一个字符的映射对应关系,然后进行解码就行了。
由于Python2的官方维护期即将结束,越来越多的Python项目从Python2切换到了Python3。可是,在实际的工作中,我发现好多人都是在用Python2的思维去写Python3的代码,Python3给我们提供了很多新的、很方便的特性,可以帮助我们快速的编写代码。
当你在处理异常时,由于处理不当或者其他问题,再次抛出另一个异常时,往外抛出的异常也会携带原始的异常信息。
在本文中,我将介绍一些简单的方法,可以将Python for循环的速度提高1.3到900倍。
nonlocal 可以将一个变量声明为非本地变量, 在python的lru_cache看到了使用
前文(Python 搭配 C++ 让性能直接拉满)我们讲到,如果有部分热点函数其性能不行,我们可以把 Python 代码改写成 C/C++ 代码以此来提升性能。经验上来看这种做法可能提升一到两个数量级多数情况下能解决问题。
缓存操作主要有两种类型。缓存如浏览器缓存,服务器缓存,代理缓存,硬件缓存工作原理的读写缓存。当处理缓存时,我们总是有大量的内存需要花费大量的时间来读写数据库、硬盘。 缓存则能帮我们加快这些任务。
Python3.8已经发布了将近一个月了,距离Python3.0第一个版本发布也将超过10年了。相信很多人还是依旧在使用Python2.7版本,想要迁移到最新版本却不知道怎么能够快速掌握其中最Amazing的方法。下面这篇文章,我会给大家推荐3.0版本依赖最最新潮的函数和语法,让你们能够在Review代码时候“脱颖而出”!
from time import time from functools import lru_cache def fibo1(n): '''递归法''' if n in (1, 2): return 1 return fibo1(n-1) + fibo1(n-2) @lru_cache(maxsize=64) def fibo2(n): '''递归法,使用缓存修饰器加速''' if n in (1, 2): return 1 return fibo2(n-1) + fibo2(n-2) d
这一题我的思路还是比较暴力的,要做的其实就是数值的检索,因此我们首先创建两个hash表来进行数值存储,这样检索的时间复杂度就是
你好,我是 zhenguo 这是我的第479篇原创,这篇文章关于Python性能调优的10个小技巧,每天花5-10分钟阅读我的文章,对你技术提升一定会有帮助。
在 Python 3 推出后,人们开始逐步将基于 Python 2 的代码迁移至 Python 3 。但在迁移过程中,很多代码都未能使用到 Python 3 提供的新功能。本文作者介绍了相关功能的介绍,包括字符串格式化处理、文件路径处理、类型提示、内置 LRU 缓存等等,帮助大家更好地利用 Python 3 书写代码。
上面提到了两个关键的地方: 自由变量 和 函数, 这两个关键稍后再说。还是得在赘述下“闭包”的意思,望文知意,可以形象的把它理解为一个封闭的包裹,这个包裹就是一个函数,当然还有函数内部对应的逻辑,包裹里面的东西就是自由变量,自由变量可以在随着包裹到处游荡。当然还得有个前提,这个包裹是被创建出来的。
Github地址:https://github.com/grantjenks/python-diskcache
许多人在了解到 Python 2.7 即将停止维护后,都开始将他们的 Python 版本从 2 切换到 3。截止到 5 月 19 号上午 10 点,Python 2.7 将终结于...
导读:从 3.0 到 3.8,Python 3 已经更新了一波又一波,但似乎我们用起来和 2.7 没有太大区别?以前该怎么写 2.7 的代码现在就怎么写,只不过少数表达方式变了而已。在这篇文章中,作者介绍了 3.0 以来真正 Amazing 的新函数与新方法,也许这些方法我们都不太熟,但它们确实在实践中非常重要。
【导读】在 Python 3 推出后,人们开始逐步将基于Python 2 的代码迁移至 Python 3 。但在迁移过程中,很多代码都未能使用到 Python 3 提供的新功能。本文作者介绍了相关功能的介绍,包括字符串格式化处理、文件路径处理、类型提示、内置 LRU 缓存等等,帮助大家更好地利用 Python 3 书写代码。
在现代金融市场中,量化交易已经成为投资领域中一种越来越普遍和重要的交易方式。然而,对于量化交易策略来说,延迟问题是一个不可忽视的挑战。本篇博客将深入探讨在使用Python进行量化交易时,如何有效地降低延迟,提高交易系统的执行效率。
Functools 模块用于高阶函数: 作用于或返回其他函数的函数。一般来说,任何可调用对象都可以作为此模块的函数处理。
使用python进入一个熟练的状态之后就会思考提升代码的性能,尤其是python的执行效率还有很大提升空间(委婉的说法)。面对提升效率这个话题,python自身提供了很多高性能模块,很多大牛开发出了高效第三方包,可谓是百花齐放。下面根据我个人使用总结出提升性能的几个层面和相关方法。
对于大多数人来说,学习Python编程最初都有一定困难。它看似晦涩难懂,以至于有人甚至怀疑自己是否还需要继续使用Excel这种传统数据分析工具。
递归是一个很经典的算法,在实际中应用广泛,也是面试中常常会提到的问题。本文就递归算法介绍如何在Python中实现递归的思想,以及递归在Python中使用时的一些注意事项,希望能够对使用Python的朋友提供一些帮助。
领取专属 10元无门槛券
手把手带您无忧上云