首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python3实现Two-Pass算法检测区域连通性

    技术背景 连通性检测是图论中常常遇到的一个问题,我们可以用五子棋的思路来理解这个问题五子棋中,横、竖、斜相邻的两个棋子,被认为是相连接的,而一样的道理,在一个二维的图中,只要在横、竖、斜三个方向中的一个存在相邻的情况...比如以下案例中的python数组,3号元素和5号元素就是相连接的,5号元素和6号元素也是相连接的,因此这三个元素实际上是属于同一个区域的: array([[0, 3, 0], [0, 5,...Two-Pass算法 一个典型的连通性检测的方案是Two-Pass算法,该算法可以用如下的一张动态图来演示: 该算法的核心在于用两次的遍历,为所有的节点打上分区的标签,如果是不同的分区,就会打上不同的标签...测试数据的生成 这里我们以Python3为例,可以用Numpy来产生一系列随机的0-1矩阵,这里我们产生一个20*20大小的矩阵: # two_pass.py import numpy as np import...总结概要 在本文中我们主要介绍了利用Two-Pass的算法来检测区域连通性,并给出了Python3的代码实现,当然在实现的过程中因为没有使用到Union这样的数据结构,仅仅用了字典来存储标签之间的关系,

    89020

    基于连通性状态压缩的动态规划问题

    基于连通性状态压缩的动态规划问题 基于状态压缩的动态规划问题是一类以集合信息为状态且状态总数为指数级的特殊的动态规划问题.在状态压缩的基础上,有一类问题的状态中必须要记录若干个元素的连通情况,我们称这样的问题为基于连通性状态压缩的动态规划问题...,第i行的n个格子之间的连通性为 ? 的方案总数. 如何表示n个格子的连通性呢?...状态表示的优化 通过观察可以发现如果轮廓线上方的n个格子中某个格子没有下插头,那么它就不会再与轮廓线以下的格子直接相连,它的连通性对轮廓线以下的格子不会再有影响,也就成为了“冗余”信息.不妨将记录格子的连通性改成记录插头的连通性...枚举完第i+1行每个格子的状态后,需要计算第i+1行n个格子之间的连通性的最小表示,通常可以使用并查集的Father数组对其重新标号或者重新执行一次BFS/DFS,时间复杂度为O(n),最后将格子的连通性转移到插头的连通性上...n个格子的颜色以及格子之间的连通性

    98580
    领券