写个求因子 因子概念:假设整数n除以m,余数为0,我们就称m是n的因子,一个整数n的因子数包含它自身的所有因子个数。 本节从求一个数因子,延伸到求连续数的多个因子讲解。...从o(n) -> o(sqrt(n))算法 实现一个数因子。 o(nlog(n))实现连续数因子。 求一个数因子 O(n) 一次循环直接扫描,这种大家比较容易理解。...(int i = 1; i <= x; ++i) { if (x % i == 0) { fs.push_back(i); } } O(sqrt(n)) 例如:40的因子有如下...= x) fs.push_back(x / i); } } 求连续数的对应因子 假设有n个连续数,求每个数的所有因子。...int n = 10; vector divisors[n + 1]; // n个数 对应的各自因子 for (int j = 1; j <= n; j++) { for (int i =
最大公因子,指两个或多个整数共有约数中最大的一个 private static int gc(int a, int b) { if(b==0){ return
#函数求本息 import math money = int(input(“请输入本金:”)) rate = float(input(“请输入年利率:”)) years = int(input(
这个版本应该是最好的实现,在这个上面增加四个时间点,可以用in方式进行判断避免出错。 @代码的注释其实就是最好的说明 class _GoogleTwoSet...
#求球体数据 import math r = float(input(“请输入球的半径:”)) area = 4 * math.pi * math.pow(r, 2) volume = (4 /
参考:http://blog.csdn.net/abcjennifer/article/details/7584628
1 问题 如何利用python求二元一次方程的根? 2 方法 通过代码输入二元一次方程求出根证明提出的方法是有效的,能够解决开头提出的问题。...delta) x1=(-b根)/(2*a) x2=(-b根)/(2*a) print(“x1=”,x1,”t”,”x2=”,x2) 3 结语 针对使用Python...求二元一次方程的根的问题,本文提出以上方法,通过本次实验,证明该方法是有效的,本次实验的方法比较单一,可以通过未来的学习对该方法进行优化。
输出格式: 在一行中按照“product = F”的格式输出阶乘的值F,请注意等号的左右各有一个空格。题目保证计算结果不超过双精度范围。
方阵A求逆,先做LU分解。...A的逆等于U的逆乘于L的逆,L的逆就利用下三角矩阵求逆算法进行求解,U的逆可以这样求:先将U转置成下三角矩阵,再像对L求逆一样对U的转置求逆,再将得到的结果转置过来,得到的就是U的逆。...因此,关键是下三角矩阵的求逆。...1.下三角矩阵求逆算法 我利用的公式计算公式如下: 对角元素.png 对角元素以下的元素.png 我的代码如下: def triInverse(matA): ''' @author:zengwei 输入...接下来,利用上面的函数来进行矩阵的求逆。
python求平均值的方法:首先新建一个python文件;然后初始化sum总和的值;接着循环输入要计算平均数的数,并计算总和sum的值;最后利用“总和/数量”的公式计算出平均数即可。...本文操作环境:Windows7系统,python3.5版本,Dell G3电脑。 首先我们先来了解一下计算平均数的IPO模式. 输入:待输入计算平均数的数。...处理:平均数算法 输出:平均数 明白了程序的IPO模式之后,我们打开本地的python的IDE工具,并新建一个python文件,命名为test6.py....【推荐:python视频教程】 第二步,初始化sum总和的值。注意,这是编码的好习惯,在定义一个变量的时候,给一个初始值。 第三步,循环输入要计算平均数的数,并计算总和sum的值。
, 1, 2]).reshape((2, 2)) print(kernel) print(np.linalg.inv(kernel)) 注意,Singular matrix奇异矩阵不可求逆 补充:python...代码如下: 1.矩阵求逆 import numpy as np a = np.array([[1, 2], [3, 4]]) # 初始化一个非奇异矩阵(数组) print(np.linalg.inv(a...)) # 对应于MATLAB中 inv() 函数 # 矩阵对象可以通过 .I 求逆,但必须先使用matirx转化 A = np.matrix(a) print(A.I) 2.矩阵求伪逆 import numpy...A[-1, 0] = -1 A = np.matrix(A) print(A) # print(A.I) 将报错,矩阵 A 为奇异矩阵,不可逆 print(np.linalg.pinv(A)) # 求矩阵
因子分析就是将存在某些相关性的变量提炼为较少的几个因子,用这几个因子去表示原本的变量,也可以根据因子对变量进行分类。 因子分子本质上也是降维的过程,和主成分分析(PCA)算法比较类似。...2种因子分析 因子分析又分为两种: 探索性因子分析:不确定在现有的自变量背后到底有几个因子在起作用,我们通过需要这种方法试图寻找到这几个因子 验证性因子分析:已经假设自变量背后有几个因子,试图通过这种方法去验证一下这种假设是否正确...i行的元素的平方和 上式两边同时求方差: $$\operatorname{Var}\left(X{i}\right)=a{i 1}^{2} \operatorname{Var}\left(F{1}\right...因子分析步骤 应用因子分析法的主要步骤如下: 对所给的数据样本进行标准化处理 计算样本的相关矩阵R 求相关矩阵R的特征值、特征向量 根据系统要求的累积贡献度确定主因子的个数 计算因子载荷矩阵A 最终确定因子模型...factor_analyzer库 利用Python进行因子分析的核心库是:factor_analyzer pip install factor_analyzer 这个库主要有两个主要的模块需要学习:
因子分析(factor analysis)因子分析的一般步骤factor_analyzer模块进行因子分析使用Python实现因子分析初始化构建数据将原始数据标准化处理 X计算相关矩阵C计算相关矩阵C的特征值...和特征向量 确定公共因子个数k构造初始因子载荷矩阵A建立因子模型将因子表示成变量的线性组合.计算因子得分....探索性因子分析是先不假定一堆自变量背后到底有几个因子以及关系,而是我们通过这个方法去寻找因子及关系。 验证性因子分析是假设一堆自变量背后有几个因子,试图验证这种假设是否正确。...计算因子得分. factor_analyzer模块进行因子分析 算法核心: 对若干综合指标进行因子分析并提取公共因子,再以每个因子的方差贡献率作为权数与该因子的得分乘数之和构造得分函数。...Series from factor_analyzer import FactorAnalyzer import warnings warnings.filterwarnings("ignore") 使用Python
Python中Math库和Python库都具备求对数的函数。 import numpy as np import math 1....Numpy库 1.1 求以e、2、10为底的对数 函数 功能 np.log(x) 以e为底的对数(自然对数) np.log10(x) 以10为底的对数 np.log2(x) 以2为底的对数 np.log1p...1.2 求以任意数为底的对数 在Numpy中以任意数为底的对数需要用到换底公式: ? 例如:以3为底,5的对数 ? 代码写出来为: np.log(5)/np.log(3) 2....2.2 求以任意数为底的对数 math.log(x, n) 其中n为底数 3. 区别 为什么有了一个Math库中求对数的方法,还要在Numpy库中内置一模一样的函数?...到此这篇关于Python中求对数方法总结的文章就介绍到这了,更多相关Python 求对数 内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!
1 问题 如何用python代码求圆周率。 2 方法 让所用公式等式右边分子都为1,分母为递增数列,从第一项开始,奇数项符号为正,偶数项符号为负。... print('\n{:=^70}'.format('计算完成')) print('\nPi的计算值为:{}'.format(round(pi*4,level)) 3 结语 针对如何利用python...求圆周率的问题,我们利用函数通过实验,证明该方法有效,但有些地方任然有误差和错误,在未来应继续学习和改善,
实例扩展: PYTHON计算圆的面积 引入pi的两种方法: 方法一: import math print(math.pi) 方法二: from math import pi print(pi) 计算圆的面积的代码
Python SymPy求极值 SymPy是Python符号计算库。其目标是成为一个功能齐全的计算机代数系统,代码保持简洁,易于理解和扩展。Python是完全由Python编写的,不依赖外部库。...1、求、求导、求偏导以及带值求导 import sympy #求 #设置符号变量Symbol只能创建一个变量 symbols 可一次定义多个变量 x1,x2,x3,x4=sympy.symbols('x1...print(x.subs(x1,2)) #对y求偏导 y=sympy.diff(PD(x1,x2,x3),x2) #对z求偏导 z=sympy.diff(PD(x1,x2,x3),x3,2) print...sympy.abc import x Limit(sin(x)/x, x, 0) # 这是一个表达式,不执行计算 Limit(1/x, x, 0, dir='-') # 这也是一个表达式,不执行计算 以上就是Python...SymPy求极值的用法,希望对大家有所帮助。
参考链接: 在Python中计算均值,中位数和众数 最佳方法: 采用取反的方式来求中位数,排序后结果为l=[1,2,3,4,5,6,7,8,9,10],长度为10,half=10//2=5,x[5]...] view plain copy nums = [1,2,3,4] 求均值和中位数均可以使用numpy库的方法: [python] view plain copy import numpy as...np #均值 np.mean(nums) #中位数 np.median(nums) 求众数方法一: 在numpy中没有直接的方法,但是也可以这样实现: [python] view plain copy...但是,由于索引值是从0开始的,所以这种求众数的方法只能用在非负数据集。...求众数方法二——直接利用scipy下stats模块【推荐】: [python] view plain copy from scipy import stats stats.mode(nums)[0]
近一个半月疯狂的接触多因子模型,其中对于单个因子的回测,是最熟的。而对于单个因子,或者叫做signal(这一系列文章后续都这么叫),是多因子模型的基础。...1.我们开始的数据 这一系列的教程,我们将从一个因子开始,最简单的因子,revs10,也就是,十天收益率。...这个教程,注重的是整个signal测试的框架,包含两个方面,测试的思路和软件的平台建设,而我们的因子是否好,其实不是我们关注的点。...2.计算因子值 我们的因子叫做revs10,说白了就是十天的收益率的值。 res10(t) = close(t) / close(t - 10) - 100% 公式大概就是上面这样。...其实,多因子模型的第一步就是这么简单。当然,这个因子是最简单的一个因子了,别的因子会用到别的数据,无论如何,核心的一步就是,千方百计计算好你的因子值,然后存下来。
我们知道,一个因子值的处理大致分为三个步骤,去极值、标准化、中性化,上次我们对因子值进行了去极值和标准化,这一次,我们主要讲一讲中性化,也就是neut。 ...所以,很多因子数值在一个行业内比较才是有效的。同样的思路,有些因子虽然看起来不是一些基本的风格因子,比如PE,但是,其实我们知道,PE和市值有很大的关系,大市值的公司,一般是成熟的公司,PE往往不高。...也就是做一个回归,其中,因子值是y,需要中性的风格因子的暴露为x,然后我们进行回归。回归之后的残差就是因子值对行业中性化后的值。这里的风格因子可以是一个也可以多个,也就是一元回归和多元回归的区别。...如果读者有wind的python的api,那么可以使用下面的函数获得我们需要的股票代码和行业代码转换的字典。这里,我们有一个假设,就是股票的行业在整个因子回测区间没有改变。...1") return {k: v for (k, v) in zip(ind_category.Codes, ind_category.Data[0])} 如果没有wind的python
领取专属 10元无门槛券
手把手带您无忧上云