首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    给予最高 500 万元的奖励:对鸿蒙、欧拉系统发行版产品或服务销售额排名前列的发行版企业

    2022年6月30日,深圳市工业和信息化局关于公开征求《深圳市关于加快培育鸿蒙欧拉生态的若干措施(征求意见稿)》意见的通告。 附件1 深圳市关于加快培育鸿蒙欧拉生态的若干措施 (征求意见稿) 为把握鸿蒙、欧拉操作系统发展的战略性机遇,支持鸿蒙、欧拉生态建设,推动我市数字经济产业高质量发展,打造全球“鸿蒙欧拉之城”。根据《深圳市培育发展软件与信息服务产业集群行动计划(2022-2025年)》部署,制定本措施。 一、培育产业主体 (一)鼓励开源贡献及开源产品开发。 支持企业及个人开发者对开源鸿蒙、开源欧拉社

    01

    离散数学笔记第五章(图论 )

    1.无向连通图 G 是欧拉图,当且仅当 G 不含奇数度结点( G 的所有结点度数为偶数); 2.无向连通图G 含有欧拉通路,当且仅当 G 有零个或两个奇数度的结点; 3.有向连通图 D 是欧拉图,当且仅当该图为连通图且 D 中每个结点的入度=出度; 4.有向连通图 D 含有欧拉通路,当且仅当该图为连通图且 D 中除两个结点外,其余每个结点的入度=出度,且此两点满足 deg-(u)-deg+(v)=±1 。(起始点s的入度=出度-1,结束点t的出度=入度-1 或两个点的入度=出度); 5.一个非平凡连通图是欧拉图当且仅当它的每条边属于奇数个环; 6.如果图G是欧拉图且 H = G-uv,则 H 有奇数个 u,v-迹仅在最后访问 v ;同时,在这一序列的 u,v-迹中,不是路径的迹的条数是偶数。 弗勒里算法 弗勒里(B.H.Fleury) 在1883 年给出了在欧拉图中找出一个欧拉环游的多项式时间算法,称为弗勒里算法(Fleury’salgorithm)。这个算法具体表述如下: 输入:一个连通偶图 G 和 G 中任意一个指定项点 u 输出:从 u 出发的 G 的一个欧拉环游 1、令 W:=u,x:=u,F:=G 2、while 3、选一条 中的边 e,其中 e 不是 F 的一条割边;如果 中的边都是割边,那么任选一条边 e 4、用 替换 ,用 y 替换 x ,用 替换 F 5、end while 6、返回 W 其算法核心就是沿着一条迹往下寻找,先选择非割边,除非这个点的邻边都是割边。这样得到一条新的迹,然后再继续往下寻找,直到把所有边找完。遵循这样一个原则就可以找出图的一个欧拉环游来。 在有向图中也可以类似地定义有向环游、有向欧拉环游、有向欧拉图和有向欧拉迹的概念。 类似地,有如下定理:一个有向图是有向欧拉图当且仅当这个图中每个顶点的出度和入度相等。 [1]

    03
    领券