大数据文摘作品,转载要求见文末 作者 | Elaine,田桂英,Aileen 导读:前段时间小白学数据专栏出了一期Python小抄表,后台反应强烈(点击查看大数据文摘小白学数据系列文章《小白学数据之常用Python库“小抄表”》)。确实,数据科学越来越热,但是对于想要学好它的小白们却很头疼一个问题,需要记住的操作和公式实在是太多了!小抄表是很实用的办法,那么今天我们就为大家送出一份大杀器:28张小抄表合辑!不管你是Python或R的初学者,还是SQL或机器学习的入门者,或者准备学习Hadoop,这里都有能满
机器学习(十四)——朴素贝叶斯实践 (原创内容,转载请注明来源,谢谢) 一、垃圾邮件分类 垃圾邮件分类,即通过读取邮件的内容,并打上标记其是垃圾邮件或者是正常的邮件,进而判断新的一个邮件是否是垃圾邮件。 1、读取内容和内容简单处理 这里已经有现成的邮件的正文内容,其中25篇正常的邮件,25篇垃圾邮件,存放成txt的格式。因此,首先需要读取文件内容,并且进行字符串的分割、去除标点符号、去除空格,另外英文单词中,小于3个字母的单词,通常是一些介词、量词等,没有实际意义,这类词语也会过滤掉。另外为了保证一致性
MLJ是一个用纯Julia编写的开源机器学习工具箱,它提供了一个统一的界面,用于与目前分散在不同Julia软件包中的有监督和无监督学习模型进行交互。
该文介绍了卡方分布分析与应用,包括卡方检验、独立性检验和拟合优度检验等。首先介绍了卡方分布的基本形式和性质,然后详细阐述了卡方检验的统计原理和计算方法。接着讨论了独立性检验和拟合优度检验的应用,包括四格表、RxC列联表和2、拟合性检验等。最后,介绍了一个使用Python实现的卡方检验代码示例。
自然语言处理任务(例如字幕生成和机器翻译)涉及生成单词序列。
原文链接: Jack-Cui,https://cuijiahua.com/blog/2017/11/ml_4_bayes_1.html
Julia新推出了一个超高纯度的机器学习框架MLJ,团队希望把MLJ打造成一个灵活的、用于组合和调整机器学习模型、具备高性能、快速开发的框架。Julia团队之所以推出MLJ,部分原因也是受到MLR的影响。
选自MachineLearningMastery 作者:Jason Brownlee 机器之心编译 参与:程耀彤、路雪 本文介绍了贪婪搜索解码算法和束搜索解码算法的定义及其 Python 实现。 自然语言处理任务如图像描述生成和机器翻译,涉及生成一系列的单词。通常,针对这些问题开发的模型的工作方式是生成在输出词汇表上的概率分布,并通过解码算法对概率分布进行采样以生成可能性最大的单词序列。在本教程中,你将学习可用于文本生成问题的贪婪搜索和束搜索解码算法。 完成本教程,你将了解: 文本生成问题中的解码问题; 贪
生成式人工智能 (GenAI[1]) 和大语言模型 (LLM[2]),这两个词汇想必已在大家的耳边萦绕多时。它们如惊涛骇浪般席卷了整个科技界,登上了各大新闻头条。ChatGPT,这个神奇的对话助手,也许已成为你形影不离的良师益友。
在这篇文章中,我将介绍用于Latent Dirichlet Allocation(LDA)的lda Python包的安装和基本用法。我不会在这篇文章中介绍该方法的理论基础。然而,这个模型的主要参考,Blei etal 2003可以在线免费获得,我认为将语料库(文档集)中的文档分配给基于单词矢量的潜在(隐藏)主题的主要思想是相当容易理解的而这个例子(来自lda)将有助于巩固我们对LDA模型的理解。那么,让我们开始......
即数组 + 链表的实现方式,通过计算哈希值,找到数组对应的位置,如果已存在元素,就加到这个位置的链表上。在 Java 8 之后,链表过长还会转化为红黑树。红黑树相较于原来的链表,多占用了一倍的空间,但是查询速度快乐一个数量级,属于空间换时间。 同时,链表转换红黑树也是一个耗时的操作。并且,一个效率高的哈希表,这个链表不应该过长。
Python 现如今已成为数据分析和数据科学使用上的标准语言和标准平台之一。那么作为一个新手小白,该如何快速入门 Python 数据分析呢?
最近有很多以小说的方式讲解数据分析的书,比如在看的这本《菜鸟侦探挑战数据分析》。里面的程序以R语言实现,案例都很简单,正巧最近在学习python,就尝试把里面的案例用python实现一下。 案件回顾 商业街抽奖 宣传说“平均每100人就能有1人抽中一等奖” 中奖率由店家调整——1% 每天的客人超过100人——一周总共有超过700人参与抽奖 1周内开出一等奖次数——5次(问题:1周之内每天都有超过100人抽奖,但是没有产生7个一等奖,只产生了5个,是不是有猫腻?) 模拟实验与分析 对于出现的问题,首先通过p
链接:https://rstudio.com/wp-content/uploads/2019/01/Cheatsheets_2019.pdf
精选了近期推送的文章,读者朋友们不放抽一些时间学习下。要想比别人多掌握一些知识和技巧,只需要抽取一些零碎时间,反复过几遍。一方面学知识点,另一方面学他人的技巧也好,经验、思维也罢。
專 欄 ❈本文作者:王勇,目前感兴趣项目商业分析、Python、机器学习、Kaggle。17年项目管理,通信业干了11年项目经理管合同交付,制造业干了6年项目管理:PMO,变革,生产转移,清算和资产
今天邀请了一位小姐姐舒梦做了春招DA岗位面经分享,文章经授权首发于公众号「数据管道」,以下为作者自述全文,希望对正在求职数据分析或准备跨行数据分析的朋友有些许帮助。
现在主流的 HashMap,一般的实现思路都是开放地址法+链地址法的方式来实现。
Python版本: Python3.x 作者:崔家华 运行平台: Windows 编辑:黄俊嘉 IDE: Sublime text3 一、前言 上篇文章Python3《机器学习实战》学习笔记(四):朴素贝叶斯基础篇之言论过滤器讲解了朴素贝叶斯的基础知识。本篇文章将在此基础上进行扩展,你将看到以下内容: 1.拉普拉斯平滑 2.垃圾邮件过滤(Python3) 3.新浪新闻分类(sklearn) 二、朴素贝叶斯改进之拉普拉斯平滑 上篇文章提到过,
最近公司项目中涉及到给每个用户推荐app,而在app数据相关处理的过程中,将app变为了一个向量,最后再转变到一个用户用一个向量来表示,而这其中用到的关键技术就是Word2Vec!之前只是大概听过,现在系统性的总结一波~
本文介绍了一种基于朴素贝叶斯算法的中文文本分类方法,该方法使用TF-IDF向量化器将文本转换为高维特征向量,并通过朴素贝叶斯分类器进行训练和分类。实验结果表明,该方法在分类准确率和效率方面表现良好,适用于处理大规模文本分类任务。
朴素贝叶斯是一种用于分类问题的机器学习算法。它是基于贝叶斯概率定理的。主要用于涉及高维训练数据集的文本分类。几个相关的例子有:垃圾邮件过滤、情感分析和新闻文章分类。 它不仅因其简单而著称,而且因其有效性而闻名。它能快速构建模型和使用朴素贝叶斯算法进行预测。朴素贝叶斯是用于解决文本分类问题的第一个算法。因此,应该把这个算法学透彻。 朴素贝叶斯算法是一种用于分类问题的简单机器学习算法。那么什么是分类问题?分类问题是监督学习问题的示例。它有助于从一组类别中识别新观察的类别(子群体)。该类别是基于包含其类别成
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 你知道贝叶斯法则。机器学习与它有何相关?它可能很难掌握如何把拼图块放在一起——我们了解它花了一段时间。 贝叶斯和频率论者 在本质上,贝叶斯意味着概率。这个具体的术语存在是因为有两个概率方法。贝叶斯认为这是一个衡量的信念,因此,概率是主观的,并且指向未来。 频率论者有不同看法:他们用概率描述过去发生的事件——这种方式是客观的并且不取决于一个人的信念。这个名字来源于一个方法——例如:我们掷
首先,正态分布是最重要的一种概率分布,正态分布(Normal distribution),也称高斯分布(Gaussian distribution),具体详细的介绍可自行网上查阅资料;
题目有点长,感觉好像也解释的不太清楚,但是大概意思就是,我们在逛一个网站的时候,譬如天猫,你会看到有“女装”、“男鞋”、“手机”等等分类,点击进去又会有相应的品牌,女装下面会有“snidle”、“伊芙丽”等品牌,男鞋下面会有“nike”、“adidas”等分类,如果一个用户在搜索nike,那么相应的标签应该会带上“男鞋”,通俗的说是会在输入框下面弹出“在男鞋下面搜索nike”,那么我写这篇文章就是要预测我们在输入一个品牌的时候,相对应的一级分类的概率是多少。 然并卵,我并没有天猫的相关数据,只有我公司的
案件回顾 传统吉祥物还是萌系美少女 商业街想设计一个吉祥物做宣传 对商业街店主和顾客发放调查问卷 调查问卷的问题中有对吉祥物的偏好调查。也有对商业街的魅力调查,选项包括:活动,促销,商品齐全和服务态度好。(问题:店主和顾客对这些问题的回答是否有区别?从调查问卷中可以获得怎样的运营建议?) 数据导入与列联表 将数据存储为csv格式,导入python。并且计算顾客和店主对商业街魅力的支持情况,生成列联表。 import pandas as pd #导入数据 survey = pd.read_csv('s
文章主要介绍了如何利用机器学习算法对RSS源进行分类和过滤。首先介绍了RSS源的分类和过滤的必要性,然后详细介绍了基于机器学习算法的RSS源过滤方法,包括特征提取、模型训练和过滤策略等。最后,介绍了一个基于机器学习算法的RSS源过滤系统的设计与实现。
机器学习实战之朴素贝叶斯 1.1、简介 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(AB)的情况下如何求得P(BA)。这里先解释什么是条件概率:P(AB)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为: 贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(AB),P(BA)则很难直接得出,但我们更关心P(BA),贝叶斯定理就
Python 实现的逻辑回归后,不像 SAS 那样会自动给出模型精确度的评价,需要人为操作计算 Python 专属的 AUC (Area Under Curve),ROC 曲线与 X 轴围成的面积大小反映了模型的精度。本文将着重 AUC 值和 ROC 曲线背后的原理和 Python 代码实现。
选自arXiv 机器之心编译 2017 年 5 月,清华大学朱军教授在机器之心 GMIS 2017 大会现场详解了他们开发的贝叶斯深度学习 GPU 库珠算。近日,清华大学公开了珠算相关论文,机器之心对
现实世界中的一些业务应用示例包括图像处理,医疗诊断,金融服务和欺诈检测。此样本说明如何使用SAS®In-Memory Statistics中的NEURAL语句来构建人工神经网络模型来识别垃圾邮件。该示例中使用的数据集是机器学习存储库中的经典Spambase数据集。请注意,SAS®内存中统计信息具有直接将数据直接从URL加载到内存中的功能,而无需保存到磁盘,如示例所示。该示例还演示了如何执行以下任务:
根据某面包店历史6个月的用户交易记录,通过RFM模型对用户分群,并建立模型预测用户的购买概率,实现对不同用户群不同购买概率的用户实行不同的发券策略,以此提升营销的准确率,实现ROI(收益与成本控制)的最大化。
你知道贝叶斯法则。机器学习与它有何相关?它可能很难掌握如何把拼图块放在一起——我们了解它花了一段时间。 贝叶斯和频率论者 在本质上,贝叶斯意味着概率。这个具体的术语存在是因为有两个概率方法。贝叶斯认为这是一个衡量的信念,因此,概率是主观的,并且指向未来。 频率论者有不同看法:他们用概率描述过去发生的事件——这种方式是客观的并且不取决于一个人的信念。这个名字来源于一个方法——例如:我们掷硬币100次,它出现头53次,所以频率/概率为0.53。 先验概率,更新和后验概率 我们从一种信念开始,叫做先验。然后,我们
原文链接:www.cnblogs.com/fydeblog/p/7277205.html
作者 | 杨秀璋(笔名:Eastmount),贵州财经大学信息学院老师,硕士毕业于北京理工大学,主要研究方向是Web数据挖掘、知识图谱、Python数据分析、图像识别等。著有《Python网络数据爬取及分析从入门到精通》等书籍,五年来在CSDN原创近300篇文章、12个专栏。
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。
数据正在变得越来越常见,小到我们每个人的社交网络、消费信息、运动轨迹……,大到企业的销售、运营数据,产品的生产数据,交通网络数据……
经常看技术文章的小伙伴可能会留意到除了正在阅读的那篇文章,在文章页面的正文下方或者右侧区域会有若干同主题、同作者的文章等你阅读;经常逛淘宝、京东的小伙伴可能发现了,一旦你购买或者查看过某个商品之后,猜你喜欢的推荐商品会贴近你刚拔草的商品…这些日常生活中常遇到的事情,可能是由一个名叫图学习的“家伙”提供技术支持。
贝叶斯算法是一种常用的概率统计方法,它利用贝叶斯定理来进行分类和预测。其在计算机还没有出现前几十年就存在了,那个时候科学家们都是用手算的,是最早的机器学习形式之一,该算法基于统计学原理,通过已知的先验概率和观测到的数据,更新对事件发生概率的估计。因为有着一个很强的假设,每个数据特征都是独立的,这也是条件独立的前提条件,也叫"朴素的"的假设,故叫朴素贝叶斯算法。
本文多资源,建议收藏。 本文针对机器学习基本概念及编程和数学基础,为你列出相应的学习资源。
我们知道,在十进制的世界里面,如果我想把3个数字:7,34,562拼接成一个长整数:734562,一般我们会这样做:
问大家一个问题 。如果手机上存储了 1000 个联系人 ,现在要你给小詹打个电话 ,跟他说 ,他老婆喊他回家吃饭 。你会怎么做 ?
这篇博客是关于机器学习中基于概率论的分类方法--朴素贝叶斯,内容包括朴素贝叶斯分类器,垃圾邮件的分类,解析RSS源数据以及用朴素贝叶斯来分析不同地区的态度.
今天这篇聊聊统计学里面的置信度和置信区间,好像没怎写过统计学的东西,这篇试着写一写。
数据仓库或数据挖掘从业者一定对“啤酒与尿布”的故事不会陌生。这就是一个使用关联规则的经典案例。根据对超市顾客购买行为的数据挖掘发现,男顾客经常一起购买啤酒和尿布,于是经理决定将啤酒与尿布放置在一起,让顾客很容易在货架上看到,从而使销售额大幅度增长。关联规则挖掘在多个领域得到了广泛应用,包括互联网数据分析、生物工程、电信和保险业的错误校验等。本篇将介绍关联规则方法、Apriori算法和MADlib的Apriori相关函数。之后我们用一个示例说明如何使用MADlib的Apriori函数发现关联规则。
机器学习算法的分类是棘手的,有几种合理的分类,他们可以分为生成/识别,参数/非参数,监督/无监督等。 例如,Scikit-Learn的文档页面通过学习机制对算法进行分组。这产生类别如:1,广义线性模型
领取专属 10元无门槛券
手把手带您无忧上云