首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一文搞定临床科研统计(下)

    大家好,上次给大家分享了统计分析的思路及简单的T检验、方差分析、卡方检验之后,小编就迫不及待地想给大家分享更常用、更高级的统计分析方法。在介绍之前呢,小编想先和大家聊一聊正态性、方差齐性那点事。正态性、方差齐性是T检验和方差分析的基本的条件,那该如何去检呢,看过上期文章的小伙们可能已经注意到,T检验和方差分析的结果中,已经有方差齐性检验的结果。在这里,小编要提醒大家注意一下,在一般的统计分析中,想要P<0.05,说明差异有统计学意义;但是在正态性检验和方差齐性检验中,想要的是P>0.05说明方差齐或服从正态分布。那今天就让小编给大家介绍一下正态性检验的方法。

    02

    R语言数据分析与挖掘(第五章):方差分析(2)——多因素方差分析

    在实际应用中,更多出现的是包含多因素的试验和处理。多因素试验与双因素试验背后的基本思想是一致的。与单因素方差分析不同,在双因素方差分析中因素间可能会有交互作用。假设有两个因素A和B,因素A和B没有交互作用指的是A的水平值不取决于B的水平值,反之亦然。对于有交互作用的因素,我们不可孤立地看待这些因素。对于双因素的情形,一般从图像上看,没有交互作用的因素水平图表现为两条不相交的线段,而有交互作用的因素水平图为两相交的线段。例如,下图显示的是在研究年龄和性别对身高是否有显著作用过程中,因素年龄与性别之间的交互作用。从图像上看,两曲线没有明显相交,据此可以推测二者间不存在相互作用。当然,要判定是否存在或者不存在交互作用,还需要根据相应的统计量来分析。

    05

    卡方检验spss步骤_数据分析–学统计&SPSS操作

    我是一个在教育留学行业8年的老兵,受疫情的影响留学行业受挫严重,让我也不得不积极寻找新的职业出路。虽然我本身是留学行业,但对数据分析一直有浓厚的兴趣,日常工作中也会做一些数据的复盘分析项目。加上我在留学行业对于各专业的通透了解,自2016年起,在各国新兴的专业–商业分析、数据科学都是基于大数据分析的专业,受到留学生的火爆欢迎,可见各行各业对于数据分析的人才缺口比较大,所以数据分析被我作为跨领域/转岗的首选。对于已到而立之年的我,这是一个重要的转折点,所以我要反复对比课程内容选择最好的,在7月中旬接触刚拉勾教育的小静老师后,她给我详细介绍了数据分析实战训练营训练营的情况,但我并没有在一开始就直接作出决定。除了拉勾教育之外,我还同时对比了另外几个同期要开设的数据分析训练营的课程,但对比完之后,基于以下几点,我最终付费报名了拉勾教育的数据分析实战训练营:

    01
    领券