首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【AAAI】四篇好文简读-专题8

    在本文中,作者提出了一种在线聚类方法,称为对比聚类(CC),它明确地执行实例级和集群级的对比学习。具体来说,对于给定的数据集,通过数据增广构造正实例对和负实例对,然后投影到特征空间中。其中,在行空间和列空间分别进行实例级和簇级的对比学习,方法是将正对相似度最大化,将负对相似度最小化。作者的关键观察是,特征矩阵的行可以被视为实例的软标签,相应地,列可以进一步被视为聚类表示。通过同时优化实例级和集群级的对比损耗,该模型以端到端方式联合学习表示和集群分配。此外,该方法可以及时计算每个个体的簇分配,即使是在数据以流形式呈现的情况下。大量的实验结果表明,CC聚类算法在6个具有挑战性的图像基准上的性能显著优于17种竞争聚类算法。特别是,CC在CIFAR-10 (CIFAR-100)数据集上达到了0.705(0.431)的NMI,与最佳基线相比,性能提高了19% (39%)

    03
    领券