首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习算法PCA算法

    前言 在机器学习中降维是我们经常需要用到的算法,在降维的众多方法中PCA无疑是最经典的机器学习算法之一,最近准备撸一个人脸识别算法,也会频繁用到PCA,本文就带着大家一起来学习PCA算法。...前置内容 要学会PCA算法,首先需要了解矩阵分解算法。而矩阵分解算法又分为特征值分解和SVD(奇异值)分解,这两个算法的目的都是提取出一个矩阵最重要的特征。...PCA算法 PCA即(Principal Component Analysis)主成分分析算法,是机器学习种应用得最广泛的数据降维算法。...PCA算法实现 基于特征值分解协方差矩阵实现PCA算法 输入数据集,需要降维到k维。 1)去均值,即将每一维特征减掉各自的平均值。...那么标准化后的特征向量为: 因此我们的矩阵P是: 可以验证协方差矩阵C的对角化: 最后我们用P的第一行乘以数据矩阵,就得到了降维后的表示: 数据矩阵X降维投影结果为: ?

    1.1K30

    数据挖掘实战:PCA算法

    PCA 算法也叫主成分分析(principal components analysis),主要是用于数据降维的。 为什么要进行数据降维?...算法就是用来解决这种问题的,其核心思想就是将 n 维特征映射到 k 维上(k < n),这 k 维是全新的正交特征。...注意,此时我们一般应该在对特征进行方差归一化,目的是让每个特征的权重都一样,但是由于我们的数据的值都比较接近,所以归一化这步可以忽略不做 第一步的算法步骤如下: ? 本例中步骤3、4没有做。...上图中的直线就是我们选取的特征向量,上面实例中PCA的过程就是将空间的2维的点投影到直线上。 那么问题来了,两幅图都是PCA的结果,哪一幅图比较好呢?...另外,由于我们前面PCA算法第一步的时候已经执行对样本数据的每一维求均值,并让每个数据减去均值的预处理了,所以每个特征现在的均值都为0,投影到特征向量上后,均值也为0.因此方差为: ?

    1.4K100

    机器学习之PCA算法

    PCA算法 PCA,即主成分分析(Principal Component Analysis),是一种常用的降维技术,用于从高维数据中提取最重要的特征。...基于最大可分性推导 基于最近重构误差推导 即等价于最大化方差: PCA算法流程 数据预处理: 标准化:对每个特征进行零均值化,即将每个特征的平均值减去整个特征列的平均值,并除以标准差。...PCA缺点 PCA的缺点包括: 数据预处理:PCA对数据的预处理要求较高。标准化是必要的,因为PCA是基于特征之间的协方差矩阵进行计算的。...非线性问题:PCA是一种线性降维方法,它假设数据是线性可分的。对于非线性问题,PCA可能无法捕捉到数据的复杂结构。针对非线性问题,可以使用核PCA或其他非线性降维方法。...基于PCA的人脸识别  机器学习之基于PCA的人脸识别_一片叶子在深大的博客-CSDN博客

    91940

    PCA算法原理及实现

    本文要介绍的目录为: 使用PCA的必要性 PCA的本质 前置知识的介绍 PCA的数学原理 PCA的思想 PCA的实现 使用PCA的必要性 ?...如上图所示,假设我们的原始数据A, B, C是在直角坐标系中的三个点,它们的坐标分别为A(x_a, y_a), B(x_b, y_b), C(x_c, y_c),那么我们现在想要使用pca,将这三个在平面上的点降维到直线上...那么现在的问题就是: 平面中的A, B, C点(高维数据)可以通过怎样的映射关系降维到黄线上(也就是高维的数据如何在低维中表示)。 这条黄线(就是低维)怎么求/确定?...这看起来似乎是一个很蠢的问题,因为答案貌似很简单,比如图xx中的点ABC不就是A(x1, y1), B(x2, y2), C(x3, y3)吗?对滴!...假设我们最终的协方差矩阵(就是上面说的对角化后的矩阵)为D,X为我们的特征矩阵,C为我们特征矩阵X的协方差矩阵,我们要找到一个矩阵P,使得我们的X特征矩阵可以变成D矩阵。 ?

    1.1K20

    数据挖掘实战:PCA算法

    PCA 算法也叫主成分分析(principal components analysis),主要是用于数据降维的。 为什么要进行数据降维?...算法就是用来解决这种问题的,其核心思想就是将 n 维特征映射到 k 维上(k < n),这 k 维是全新的正交特征。...注意,此时我们一般应该在对特征进行方差归一化,目的是让每个特征的权重都一样,但是由于我们的数据的值都比较接近,所以归一化这步可以忽略不做 第一步的算法步骤如下: ? 本例中步骤3、4没有做。...上图中的直线就是我们选取的特征向量,上面实例中PCA的过程就是将空间的2维的点投影到直线上。 那么问题来了,两幅图都是PCA的结果,哪一幅图比较好呢?...另外,由于我们前面PCA算法第一步的时候已经执行对样本数据的每一维求均值,并让每个数据减去均值的预处理了,所以每个特征现在的均值都为0,投影到特征向量上后,均值也为0.因此方差为: ?

    1.2K70

    降维之pca算法

    pca算法:  算法原理: pca利用的两个维度之间的关系和协方差成正比,协方差为0时,表示这两个维度无关,如果协方差越大这表明两个维度之间相关性越大,因而降维的时候, 都是找协方差最大的。...2 计算协方差矩阵C=1mXTXC=1mXTX 3 求出CC的特征值和特征向量 4 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P 5 Y=XPY=XP就是降维到k维后的数据。...= PCA(n_components=2) reduced_X = pca.fit_transform(X) red_x, red_y = [], [] blue_x, blue_y = [], [...green_x.append(reduced_X[i][0]) green_y.append(reduced_X[i][1]) plt.scatter(red_x, red_y, c=...'r', marker='x') plt.scatter(blue_x, blue_y, c='b', marker='D') plt.scatter(green_x, green_y, c='g',

    67560

    PCA算法流程及个人理解

    前言 PCA,即主成分分析,是一种数据降维的方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低数据维数,从而实现提升数据处理速度的目的。 流程 1.数据标准化处理。...个人理解 PCA算法的核心降维其实就是把高维的数据选取一组组基底(即协方差矩阵计算出特征向量)进行分解,这个基底要让高维分解的数据尽量包含更多的信息(方差:数据更分散;协方差:线性无关),毕竟高维数据变成低维数据肯定要损失一些信息...2)PCA对数据降维的同时也对新求出的特征值进行排序,根据所设置的阈值进行根据重要性程度的排列,可以达到在降维的同时最大程度保留原有信息。 3)各个主成分之间正交,无原始数据之间的互相影响。...3)非高斯分布的情况下,PCA方法得出的主元可能不是最优的。

    2.5K20

    C语言算法-学习二

    也就是 算法(algorithm) 一个程序除了 算法 和 数据结构 这两个要素外,还应当采用 结构化程序设计方法 进行程序设计,并用某一种 计算机语言 表示。...什么是算法 算法是为了解决问题而执行的一系列步骤。 计算机的算法可以分为两大类别: 数值运算算法 数值运算的目的是求数值解。 非数值运算算法 非数值运算用于事务管理领域(图书检索,人事管理等等)。...算法的目的是为了求解,“解”就是输出 有效性。算法中的每一个步骤都应当能有效地执行,并得到确定的结果 怎么表示一个算法 常用的方法有: 自然语言 流程图 NS图 伪代码 .........流程图表示算法 流程图是用一些图框来表示各种操作, 用图形表示算法,直观形象,易于理解。...image.png 以上面的例子做N-S图 image.png 用C语言表示算法 while循环 #include int main() { int a,i; a

    2.7K30

    一个c语言程序能实现几种算法_C语言实现算法

    摘要:本文主要是对 DOA(波达方向)估计中传统 MUSIC 算法及其改进算法作了简要 的介绍,主要包括了MUSIC算法,求根MUSIC算法,循环MUSIC算法,波束空间MUSIC算法,SMART MUSIC...算法。...于是在原来MUSIC的基础上又诞生了求根MUSIC算法、约束MUSIC算法、波束空间MUSIC算法等。 2 ....2.3求根MUSIC算法: 2.3.1求根MUSIC算法原理 对于阵元间距为d的等距直线阵列,导引向量 的第m个元素可以表示为 则MUSIC谱函数可以写成: 其中 是矩阵C中第L条对角线的元素之和。...假定入射信号为窄带信号,波长为 ,则M维接受信号矢量可以表示为 其中 是阵列方向向量: 从向量 中抽出一个L维的子向量 ( ),有 当满足 时, 当满足 时, 可以证明,向量 的子向量的相关矩阵C满足

    3.5K30

    C语言 排序算法_C语言中三大经典的排序算法

    直接选择排序 2.2堆排序 三 交换排序 3.1冒泡排序 3.2快速排序 3.3快速排序的优化(非递归) 四 归并排序 4.1归并排序递归版本 4.2归并排序非递归版本 总结 ---- 前言 常见的排序算法如下...时间复杂度:O(N^2) 空间复杂度:O(1),它是一种稳定的排序算法 稳定性:稳定 1.2希尔排序 希尔排序法又称缩小增量法。..., key+1, right); } 1.空间复杂度 0(lgn) 2.时间复杂度0(n*lgn) 3.3快速排序的优化(非递归) 主要通过数据结构栈来模拟实现类似于二叉树的前序遍历 如果有同学对C语言实现栈不熟悉可以点一下链接...:C源实现数据结构栈 具体代码如下: typedef int STDataType; typedef struct Stack { STDataType* a; int top; // 栈顶 int...,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。

    2.7K20

    浅析C语言贪心算法

    前言 贪心算法的定义: 贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。...贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。...贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。...贪心算法的定义: 贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。...总结 这篇文章我简单介绍了贪心算法,真的只是简单介绍,大佬们可以划走了,但这篇文章对新手还是会有很多帮助的,希望这篇文章可以为广大算法新手们的深入学习打好基础。

    10110

    C语言实现洗牌算法

    洗牌算法 Fisher-Yates洗牌算法是由 Ronald A.Fisher和Frank Yates于1938年发明的,后来被Knuth在书中介绍,很多人直接称Knuth洗牌算法, Knuth大家应该比较熟悉...,《The Art of Computer Programming》作者,算法理论的创始人。...我们现在所使用的各种算法复杂度分析的符号,就是他发明的。 等概率:洗牌算法有些人也称等概率洗牌算法,其实发牌的过程和我们抽签一样的,大学概率论讲过抽签是等概率的,同样洗牌算法选中每个元素是等概率的。...用洗牌算法思路从1、2、3、4、5这5个数中,随机取一个数 [640?...int randX = randNumber/M;    int randY = randNumber%M;        swap(iX,iY,randX,randY); } 更多案例可以go公众号:C语言入门到精通

    3K2219

    C语言银行家算法

    算法简介 银行家算法(Banker’s Algorithm)是一个避免死锁(Deadlock)的著名算法,是由艾兹格·迪杰斯特拉在1965年为T.H.E系统设计的一种避免死锁产生的算法。...算法目的 为了了解系统的资源分配情况,假定系统的任何一种资源在任意时刻只能被一个进程使用,任何进程已经占用的资源只能由进程自己释放,而不能由其他进程抢占,当进程申请的资源不能满足时,必须等待。...因此只要资源分配算法能保证进程的资源请求,且不出现循环等待,则系统不会出现死锁。 算法原理 在避免死锁的方法中,所施加的限制条件较弱,有可能获得令人满意的系统性能。...银行家算法的基本思想是分配资源之前,判断系统是否是安全的;若是,才分配。它是最具有代表性的避免死锁的算法。 设进程cusneed提出请求REQUEST [i],则银行家算法按如下规则进行判断。...安全性检查算法 (1)设置两个工作向量Work=AVAILABLE;FINISH (2)从进程集合中找到一个满足下述条件的进程, FINISH==false; NEED<=Work; 如找到,执行(

    4.4K20

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券