首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

分析递归函数的时间复杂度

递归算法的时间复杂度表达式: O(T) = R * O(s) O(T)表示时间复杂度 R表示递归调用的次数 O(s)每次递归调用计算的时间复杂度 想想斐波那契函数,它的递归关系是f(n)...解释:这种情况下,我们最好是可以借助执行树,它是一颗被用来表示递归函数执行流程的数。树中的每一个节点代表递归函数的一次调用。所以,树中节点的总数与执行期间递归调用的数量相对应。...所以,我们可以估算出f(n)的时间复杂度就是O(2n) 备忘录 备忘录技术是用来优化递归算法时间复杂度的技术。...通过缓存和重用中间结果的方式,备忘录可以极大地减少递归调用的次数,也就是减少执行树中分枝的数量。所以,当我们使用备忘录来分析递归算法的时间复杂度时候应该把这减少的部分考虑到。...现在我们就可以利用文章开头列出的公式来计算备忘录技术应用后的时间复杂度:O(1)n=O(n)。 结论 备忘录不仅优化算法的时间复杂度,而且还可以简化时间复杂度的计算。

71250

时间复杂度中的log(n)底数到底是多少?

其实这里的底数对于研究程序运行效率不重要,写代码时要考虑的是数据规模n对程序运行效率的影响,常数部分则忽略,同样的,如果不同时间复杂度的倍数关系为常数,那也可以近似认为两者为同一量级的时间复杂度...假设有底数为2和3的两个对数函数,如上图。当X取N(数据规模)时,求所对应的时间复杂度得比值,即对数函数对应的y值,用来衡量对数底数对时间复杂度的影响。...用文字表述:算法时间复杂度为log(n)时,不同底数对应的时间复杂度的倍数关系为常数,不会随着底数的不同而不同,因此可以将不同底数的对数函数所代表的时间复杂度,当作是同一类复杂度处理,即抽象成一类问题。...当然这里的底数2和3可以用a和b替代,a,b大于等于2,属于整数。a,b取值是如何确定的呢? 有点编程经验的都知道,分而治之的概念。...排序算法中有一个叫做“归并排序”或者“合并排序”的算法,它用到的就是分而治之的思想,而它的时间复杂度就是N*logN,此算法采用的是二分法,所以可以认为对应的对数函数底数为2,也有可能是三分法,底数为3

2.9K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ——算法的时间复杂度和空间复杂度

    1.算法效率 1.算法的复杂度 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。...2.时间复杂度 1.时间复杂度的概念 时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。...另外有些算法的时间复杂度存在最好、平均和最坏情况: 最坏情况:任意输入规模的最大运行次数(上界) 平均情况:任意输入规模的期望运行次数 最好情况:任意输入规模的最小运行次数(下界) 例如:在一个长度为...n-1 n-2 n-3 n-4 n-5......5 4 3 2 1 n*(n-1)/2 所以该函数的时间复杂度为O(N^2) 实例6: // 计算BinarySearch的时间复杂度?...——>简写为logN 所以该函数的时间复杂度为O(logN).

    11310

    算法的时间复杂度和空间复杂度

    算法的复杂度         算法的复杂度就是用来衡量一个算法的效率,一般由两个指标构成,时间复杂度和空间房租啊都。时间复杂度在乎算法的运行快慢,空间复杂度衡量一个算法运行时所需要的额外空间大小。...在早期的时候,计算机存储和内存都很小,需要在乎空间复杂度,但是现在计算机的内存都很大,那么也就不在那么在乎空间复杂度了。...时间复杂度 概念         时间复杂度是一个函数,它用于定量描述一个算法的运行时间,一个算法所消耗的时间是不可以算出来的,只有放到机器上才能得知,但是很麻烦。...N^2 + 2* N + 10         那么它的时间复杂度就是O(N ^ 2) 大O的渐进表示法         大O是用于描述函数渐进行为的数学符号。        ...注意的是:函数运行时所占用的栈空间(存储参数,局部变量,一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时额外申请的空间来确定。

    11110

    算法的时间复杂度和空间复杂度

    1.2 算法的复杂度 算法在编写成可执行程序后,运行时需要耗费时间资源和空间 ( 内存 ) 资源 。...因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的 ,即时间复杂度和空间复杂度。...2.时间复杂度 2.1 时间复杂度的概念 时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个函数 ,它定量描述了该算法的运行时间。...另外有些算法的时间复杂度存在最好、平均和最坏情况: 最坏情况:任意输入规模的最大运行次数 ( 上界 ) 平均情况:任意输入规模的期望运行次数 最好情况:任意输入规模的最小运行次数...注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

    11410

    算法的时间复杂度和空间复杂度-总结

    大家好,又见面了,我是你们的朋友全栈君。 算法的时间复杂度和空间复杂度-总结 通常,对于一个给定的算法,我们要做 两项分析。...Landau符号的作用在于用简单的函数来描述复杂函数行为,给出一个上或下(确)界。在计算算法复杂度时一般只用到大O符号,Landau符号体系中的小o符号、Θ符号等等比较不常用。...⑵ 计算基本语句的执行次数的数量级;   只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。...n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n3). (5)常用的算法的时间复杂度和空间复杂度 一个经验规则:其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n*...2、算法的空间复杂度 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。

    1.5K20

    算法的时间复杂度和空间复杂度计算

    1、算法时间复杂度 1.1算法时间复杂度的定义: 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。...它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度,是一种“渐进表示法”。其中f(n)是问题规模n的某个函数。...得到的最后结果就是大O阶。 ①常数阶 例:段代码的大O是多少?...function函数的时间复杂度是O(1),所以整体的时间复杂度就是循环的次数O(n)。...“渐进表示法”,这些所需要的内存空间通常分为“固定空间内存”(包括基本程序代码、常数、变量等)和“变动空间内存”(随程序运行时而改变大小的使用空间) 通常,我们都是用“时间复杂度”来指运行时间的需求,是用

    2.3K20

    关于时间复杂度和空间复杂度的问题

    对于程序员来说,了解算法的时间复杂度和空间复杂度是至关重要的。时间复杂度和空间复杂度是评估算法性能的指标,可以帮助我们预估算法的执行时间和资源消耗情况。...通过对算法中基本操作的计数,消除低阶项和常数系数,我们可以得到算法的大O表示,从而了解算法在不同输入规模下的执行时间增长趋势。 除了时间复杂度,空间复杂度也是评估算法性能的重要指标。...动态空间复杂度:一些算法在执行过程中会动态地申请或释放内存空间,其空间复杂度可能难以精确确定。 综上所述,数据结构与算法的时间复杂度和空间复杂度是评估算法性能的重要指标。...通过了解算法的时间复杂度和空间复杂度,我们可以预估算法的执行时间和资源消耗情况,从而选择合适的算法来提高程序的执行效率和节约资源消耗。...掌握数据结构和算法的复杂度分析方法是程序员必备的基础知识,对于编写高效的代码和解决复杂的问题非常有帮助。 图片来源:https://baijiahao.baidu.com/s?

    8610

    算法的时间复杂度和空间复杂度笔记

    ,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。...第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n^2)。...O(f(n))和 T2(n)=O(g(n)),则 T1*T2=O(f(n)*g(n)) (5).对于复杂的算法,可以将它分成几个容易估算的部分,然后利用求和法则和乘法法则技术整个算法的时间复杂度 另外还有以下...O(n) 与上方雷同,较简单,忽略 O(n^3) 与上方雷同,较简单,忽略 常用的算法的时间复杂度和空间复杂度 ?...1.算法的输入输出数据所占用的存储空间是由要解决的问题决定的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。

    1.1K10

    7个常用的Pandas时间戳处理函数

    Pandas 库中有四个与时间相关的概念 日期时间:日期时间表示特定日期和时间及其各自的时区。...前面我们也介绍过几种使用pandas处理时间序列文章,可以戳: 时间序列 | pandas时间序列基础 时间序列 | 字符串和日期的相互转换 时间序列 | 重采样及频率转换 时间序列 | 时期(Period...第一步是导入 panda 的并使用 Timestamp 和 day_name 函数。"Timestamp"功能用于输入日期,"day_name"功能用于显示指定日期的名称。...使用"date_range"函数,输入开始和结束日期,可以获得该范围内的日期。...最后总结,本文通过示例演示了时间序列和日期函数的所有基础知识。建议参考本文中的内容并尝试pandas中的其他日期函数进行更深入的学习,因为这些函数在我们实际工作中非常的重要。

    1.5K10

    pandas中的loc和iloc_pandas loc函数

    大家好,又见面了,我是你们的朋友全栈君。...目录 pandas中索引的使用 .loc 的使用 .iloc的使用 .ix的使用 ---- pandas中索引的使用 定义一个pandas的DataFrame对像 import pandas as pd....loc[],中括号里面是先行后列,以逗号分割,行和列分别是行标签和列标签,比如我要得到数字5,那么就就是: data.loc["b","B"] 因为行标签为b,列标签为B,同理,那么4就是data...5,右下角的值是9,那么这个矩形区域的值就是这两个坐标之间,也就是对应5的行标签到9的行标签,5的列标签到9的列标签,行列标签之间用逗号隔开,行标签与行标签之间,列标签与列标签之间用冒号隔开,记住,.loc...那么,我们会想,那我们只知道要第几行,第几列的数据呢,这该怎么办,刚好,.iloc就是干这个事的 .iloc的使用 .iloc[]与loc一样,中括号里面也是先行后列,行列标签用逗号分割,与loc不同的之处是

    1.2K10

    推荐7个常用的Pandas时间序列处理函数

    在零售、经济和金融等行业,数据总是由于货币和销售而不断变化,生成的所有数据都高度依赖于时间。 如果这些数据没有时间戳或标记,实际上很难管理所有收集的数据。...sklern库中也提供时间序列功能,但 pandas 为我们提供了更多且好用的函数。 Pandas 库中有四个与时间相关的概念 日期时间:日期时间表示特定日期和时间及其各自的时区。...前面我们也介绍过几种使用pandas处理时间序列文章,可以戳: 当时间序列数据和Pandas撞了个满怀 | 干货分享 | Pandas处理时间序列的数据 现在我们接续看几个使用这些函数的例子。...使用"date_range"函数,输入开始和结束日期,可以获得该范围内的日期。...最后总结,本文通过示例演示了时间序列和日期函数的所有基础知识。建议参考本文中的内容并尝试pandas中的其他日期函数进行更深入的学习,因为这些函数在我们实际工作中非常的重要。

    1.1K20

    数据结构01 算法的时间复杂度和空间复杂度

    (n)的同数量级函数。...(4)平均时间复杂度和最坏时间复杂度:     平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。 最坏情况下的时间复杂度称最坏时间复杂度。...这段程序的运行是和n无关的, 就算它再循环一万年,我们也不管他,只是一个常数阶的函数   【2】当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。...它们的渐近时间复杂度O(n2)和O(n3) 评价了这两个算法在时间方面的性能。...在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予区分,而经常是将渐近时间复杂度 O(f(n)) 简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。

    1.3K30

    Pandas 中最常用的 7 个时间戳处理函数

    数据科学和机器学习中时间序列分析的有用概念 在零售、经济和金融等行业,数据总是由于货币和销售而不断变化,生成的所有数据都高度依赖于时间。如果这些数据没有时间戳或标记,实际上很难管理所有收集的数据。...sklern库中也提供时间序列功能,但 Pandas 为我们提供了更多且好用的函数。 Pandas 库中有四个与时间相关的概念 日期时间:日期时间表示特定日期和时间及其各自的时区。...第一步是导入 panda 的并使用 Timestamp 和 day_name 函数。“Timestamp”功能用于输入日期,“day_name”功能用于显示指定日期的名称。...使用“date_range”函数,输入开始和结束日期,可以获得该范围内的日期。...最后总结,本文通过示例演示了时间序列和日期函数的所有基础知识。建议参考本文中的内容并尝试pandas中的其他日期函数进行更深入的学习,因为这些函数在我们实际工作中非常的重要。

    2K20

    算法设计的艺术:探索时间复杂度和空间复杂度的计算方法

    指算法运行效率高,即算法运行消耗的时间短。(5)低存储。算法所需的存储空间小。时间复杂度算法时间复杂度是指算法运行所需的时间。我们将算法基本运算的执行次数作为时间复杂度的衡量标准。...,小项和常数项可以忽略不计。...用极限表示为:当n足够大时,T(n)和f(n)近似相等,可以用O(f(n))表示时间复杂度渐近上限,衡量算法的时间复杂度。上述算法的时间复杂度就可以表示为O(f(n))=O(n^2)。...func(n-1); }假设n=5,其递推和回归过程如下:上述过程是逻辑思维的推理,在计算机中使用栈存放上述过程,即后进先出的模式。...把每个格子所需的麦子数加起来,总和为S,则:上述等式等号两边都乘以2,等式依旧成立:两个等式相减,得:按照一颗麦粒平均重量约41毫克,则总麦粒的总重量为:是不是很大,我们称这样的函数为爆炸性增量函数。

    9400

    我们常说的算法时间复杂度和空间复杂度到底是什么?

    算法的优劣主要从它执行时所占用的「时间」和「空间」两个方面来进行评定,也就是我们常听到的「时间复杂度」和「空间复杂度」。 时间复杂度:执行算法所需要的计算工作量,可以估算出程序对处理器的使用程度。...而在某些实际场景中,还可以用最好情况下的频度和最坏情况下的频度的平均值来作为算法的时间复杂度。...空间复杂度 和时间复杂度类似,一个算法的空间复杂度,也常用大 O 记法表示。...总结 时间复杂度和空间复杂度都是一种经过严谨推算得出的预估值,并不能代表实际情况。 时间复杂度和空间复杂度代表的是一种趋势。...我们一般情况下所说的时间复杂度和空间复杂度,都是最坏情况下的执行趋势,实际情况可能比预估的要好。

    88910

    时间序列的重采样和pandas的resample方法介绍

    在本文中,我们将深入研究Pandas中重新采样的关键问题。 为什么重采样很重要? 时间序列数据到达时通常带有可能与所需的分析间隔不匹配的时间戳。...Pandas中的resample()方法 resample可以同时操作Pandas Series和DataFrame对象。它用于执行聚合、转换或时间序列数据的下采样和上采样等操作。...下面是resample()方法的基本用法和一些常见的参数: import pandas as pd # 创建一个示例时间序列数据框 data = {'date': pd.date_range(...cumsum函数计算累积和,第二个管道操作计算每个组的'C_1'和'C_0'之间的差值。像管道一样执行顺序操作。...重采样是时间序列数据处理中的一个关键操作,通过进行重采样可以更好地理解数据的趋势和模式。 在Python中,可以使用Pandas库的resample()方法来执行时间序列的重采样。 作者:JI

    1.1K30
    领券