首页
学习
活动
专区
圈层
工具
发布

select count(*)、count(1)、count(主键列)和count(包含空值的列)有何区别?

下班路上看见网上有人问一个问题: oracle 10g以后count(*)和count(非空列)性能方面有什么区别?...前三个均为表数据总量,第四个SQL结果是99999,仅包含非空记录数据量,说明若使用count(允许空值的列),则统计的是非空记录的总数,空值记录不会统计,这可能和业务上的用意不同。...其实这无论id2是否包含空值,使用count(id2)均会使用全表扫描,因此即使语义上使用count(id2)和前三个SQL一致,这种执行计划的效率也是最低的,这张测试表的字段设置和数据量不很夸张,因此不很明显...总结: 11g下,通过实验结论,说明了count()、count(1)和count(主键索引字段)其实都是执行的count(),而且会选择索引的FFS扫描方式,count(包含空值的列)这种方式一方面会使用全表扫描...,另一方面不会统计空值,因此有可能和业务上的需求就会有冲突,因此使用count统计总量的时候,要根据实际业务需求,来选择合适的方法,避免语义不同。

4.7K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas系列3_缺失值处理和apply用法

    知识点 空值删除和填充 apply、applymap用法 shift()用法 value_counts()和mean():统计每个元素的出现次数和行(列)的平均值 缺失值和空值处理 概念 空值:空值就是没有任何值...,"" 缺失值:df中缺失值为nan或者naT(缺失时间),在S型数据中为none或者nan 相关函数 df.dropna()删除缺失值 df.fillna()填充缺失值 df.isnull() df.isna...() 官方文档 df.dropna() 函数作用:删除含有空值的行或列,删除缺失值 DataFrame.dropna(axis=0, how='any', thresh=None, subset=None..., inplace=False) axis:维度,0表示index行,1表示columns列,默认为0 how: all:全部为缺失值则删除该行或者列 any:至少有一个则删除 thresh...2019-09-28 -4.284321 -5.942288 -2.905034 -4.137728 2019-09-29 NaN NaN NaN NaN apply用法(重点) # 求出每列的max 和

    1.5K20

    如何在 SQL 中查找重复值? GROUP BY 和 HAVING 查询示例教程

    如果您想知道如何在表中查找重复值,那么您可以在 SQL 中使用 GROUP BY 和 HAVING 子句。 使用 group by 您可以创建组,如果您的组有超过 1 个元素,则意味着它是重复的。...您需要编写一个查询来查找所有重复值。...使用 GROUP BY 查找重复元素 这个问题最简单的解决方案是使用 GROUP BY 和 HAVING 子句。...这是查找重复电子邮件的 SQL 查询: SELECT Email FROM Person GROUP BY Email HAVING COUNT(Email) > 1 使用self-join在列中查找重复值...= p1.Id ) 总结 这就是如何使用 GROUP BY 和 HAVING 子句在 SQL 中查找重复项的全部内容。 我还向您展示了如何使用自联接和带有 EXISTS 子句的子查询来解决这个问题。

    18K10

    Power BI 图像在条件格式和列值的行为差异

    Power BI在表格矩阵条件格式和列、值区域均可以放入图像,支持URL、Base64、SVG等格式。同样的图像在不同的区域有不同的显示特性。...,表格格式设置区域的图像大小和度量值设置为相同值: 显示效果如下所示: 大家可以看到,相同的图片在不同区域的显示大小是不同的。...以上测试可以得出第一个结论:条件格式图像的显示大小和图像本身的大小无关;列值的图像显示大小既受图像本身大小影响,又受表格矩阵格式设置区域的区域空间影响。 那么,条件格式图像大小是不是恒定的?不是。...条件格式的图像是否和施加条件格式的当前列值(例如上图的店铺名称)是完全一体化的? 答案是看情况。...换一个场景,对店铺名称施加排名条件格式(SVG图像),为该列设置背景色,可以看到背景色穿透了本应存在的缝隙,条件格式和列值融为一体。

    1.4K10

    C# 布尔值和条件语句:入门指南和实用示例

    C# 布尔值 在编程中,通常需要一个只能有两个值之一的数据类型,比如: 是 / 否 开 / 关 真 / 假 为此,C# 有一个 bool 数据类型,可以取 true 或 false 的值。...布尔表达式 布尔表达式通过比较值/变量返回布尔值:True 或 False。这对于构建逻辑和找到答案很有用。...; } else { Console.WriteLine("Not old enough to vote."); } 表达式的布尔值是所有 C# 比较和条件的基础。...C# 条件和 if 语句 C# 支持数学中的常见逻辑条件: 小于:a < b 小于或等于:a <= b 大于:a > b 大于或等于:a >= b 等于:a == b 不等于:a !...在 else if 语句中的下一个条件也为 False,因此我们转到 else 条件,因为 condition1 和 condition2 都为 False,并在屏幕上打印"晚上好"。

    55510

    用过Excel,就会获取pandas数据框架中的值、行和列

    标签:python与Excel,pandas 至此,我们已经学习了使用Python pandas来输入/输出(即读取和保存文件)数据,现在,我们转向更深入的部分。...在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...图3 使用pandas获取列 有几种方法可以在pandas中获取列。每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

    29.7K60

    怎么在a_bool的值为True的条件拼接a和a_1?

    一、前言 前几天在Python钻石群有个叫【有点意思】的粉丝问了一道关于pandas中字符串拼接问题,如下图所示。...其实关于布尔值的用法解析,在之前的文章中,我也有写过,Python中的and和or,结果让人出乎意料之外,最开始是【小小明】大佬启蒙,之后【瑜亮老师】给我们启蒙,现在大家也都拓展了思路,下次遇到了,就可以多一个思路了...这篇文章主要盘点一个字符串拼接的问题,借助布尔值本身就是0和1的规律,直接进行运算,拓展了粉丝的思路!如果你还有其他方法,也欢迎大家积极尝试,一起学习,记得分享给我哦。...最后感谢粉丝【有点意思】提问,感谢【月神】在运行过程中给出的思路和代码建议,感谢粉丝【dcpeng】等人参与学习交流。

    87110

    Pandas之实用手册

    pandas 的核心是名叫DataFrame的对象类型- 本质上是一个值表,每行和每列都有一个标签。...:使用数字选择一行或多行:也可以使用列标签和行号来选择表的任何区域loc:1.3 过滤使用特定值轻松过滤行。...最简单的方法是删除缺少值的行:fillna()另一种方法是使用(例如,使用 0)填充缺失值。1.5 分组使用特定条件对行进行分组并聚合其数据时。...例如,按流派对数据集进行分组,看看每种流派有多少听众和剧目:Pandas 将两个“爵士乐”行组合为一行,由于使用了sum()聚合,因此它将两位爵士乐艺术家的听众和演奏加在一起,并在合并的爵士乐列中显示总和...Pandas轻松做到。通过告诉 Pandas 将一列除以另一列,它识别到我们想要做的就是分别划分各个值(即每行的“Plays”值除以该行的“Listeners”值)。

    1.6K10

    我的Python分析成长之路9

    1.pandas数据结构     在pandas中,有两个常用的数据结构:Series和Dataframe  为大多数应用提供了一个有效、易用的基础。     ...loc内部可以出入表达式,返回布尔值的series       iloc和loc的区别是,iloc接受的必须是行索引和列索引的位置。...17 print(group.min()) #返回每个分组的最小值 18 print(group.std()) #返回每组的标准差 19 print(group.sum()) #返回每组的和 20...16 print(group.min()) #返回每个分组的最小值 17 print(group.std()) #返回每组的标准差 18 print(group.sum()) #返回每组的和 19...#返回每个分组的最小值 print(group.std()) #返回每组的标准差 print(group.sum()) #返回每组的和 print(group.quantile(0.9)) #返回每组的分位数

    2.7K11

    Pandas与SQL的数据操作语句对照

    内容 选择行 结合表 条件过滤 根据值进行排序 聚合函数 选择行 SELECT * FROM 如果你想要选择整个表,只需调用表的名称: # SQL SELECT * FROM table_df...'Apple', 'column_b':'Banana'}) SELECT CASE WHEN 对于等价于SELECT CASE WHEN的情况,您可以使用np.select(),其中首先指定您的选择和每个选择的值...# SQL SELECT column_a, COUNT DISTINCT(ID) FROM table_df GROUP BY column_a # Pandas table_df.groupby...FROM table_df GROUP BY column_a # Pandas table_df.groupby('column_a')['revenue'].mean() 总结 希望在使用Pandas...当我和Pandas一起工作时,我经常会回想到这一点。 如果能够通过足够的练习,你将对Pandas感到更舒适,并充分理解其潜在机制,而不需要依赖于像这样的备记单。 一如既往,祝你编码快乐!

    3.8K20

    sql2pandas方法手册

    标准的SQL查询语法如下: select (distinct) [字段] from [表1] join [表2] on [匹配字段] where [过滤条件] group by [字段] having...该数据在pandas和MySQL中分别样式分别如下: ? ? SQL的增删改查最主要的还是查询方法。我们先从查询方法开始。 select:选择球员、球队和场均得分三列: ?...count:统计样本量 ? 分类值统计: ? 连续值描述性统计: ? where: 单条件:查找属于得分后卫的球员: ? 多条件:查找属于得分后卫且得分大于27分的球员: ?...group by语句: 求每个位置球员的平均得分并降序排序: ? having子句: 求每个位置球员的平均得分并筛选大于26分的记录: ?...主要的查询部分对照完了之后,我们再来看SQL和pandas中的增删改方法。 SQL中创建表、修改表、插入表和删除表的语句如下表所示: ? 上述四种方法与之对应的pandas写法如下: ?

    73310

    0基础学习PyFlink——用户自定义函数之UDAF

    Row(pandas_df.count()) tab_student_exam_count = tab_source.group_by(col('name')) \ .aggregate...Row(pandas_df.count()) tab_class_exam_count = tab_source.group_by(col('class')) \ ....按姓名(name)聚类 UDTF统计聚类后集合的最大值和最小值,并返回 别名UDTF返回的列名 select出数据 @udaf(result_type=DataTypes.ROW([DataTypes.FIELD...最小值;分数最大值所在行的课程名,和分数最小值所在行的课程名,并返回 别名UDTF返回的列名 select出数据 @udaf(result_type=DataTypes.ROW([DataTypes.FIELD...最小值;分数最大值所在行的人名,和分数最小值所在行的人名,并返回 别名UDTF返回的列名 select出数据 @udaf(result_type=DataTypes.ROW([DataTypes.FIELD

    44330

    一场pandas与SQL的巅峰大战(六)

    具体来讲,第一篇文章一场pandas与SQL的巅峰大战涉及到数据查看,去重计数,条件选择,合并连接,分组排序等操作。...第五篇文章一场pandas与SQL的巅峰大战(五)我们用多种方案实现了分组和不分组情况下累计百分比的计算。 本篇文章主要来总结学习SQL和pandas中计算日活和多日留存的方法。...代码如下: select substr(ts, 1, 10) as dt, count(distinct uid) as dau from t_login group by substr(ts, 1,...代码如下,注意连接条件: SELECT substr(a.ts, 1, 10) as dt, count(distinct a.uid), count(distinct b.uid), concat...至此,我们完成了SQL和pandas对日活和留存率的计算。 小结 本篇文章我们研究了非常重要的两个概念,日活和留存。探讨了如何用SQL和pandas进行计算。日活计算比较简单。

    2.1K11

    2020年入门数据分析选择Python还是SQL?七个常用操作对比!

    本文将分别用MySQL和pandas来展示七个在数据分析中常用的操作,希望可以帮助掌握其中一种语言的读者快速了解另一种方法!...而在pandas中,按照条件进行查找则可以有多种形式,比如可以将含有True/False的Series对象传递给DataFrame,并返回所有带有True的行 ?...在pandas中也有类似的操作 ? 查找空值 在pandas检查空值是使用notna()和isna()方法完成的。...例如,通过对性别进行分组查询 SELECT sex, count(*) FROM tips GROUP BY sex; ? 在pandas中的等价操作为 ?...注意,在上面代码中,我们使用size()而不是count() 这是因为count()将函数应用于每一列,并返回每一列中非空记录的数量!

    4.3K31
    领券