首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

联合索引(多列索引)

联合索引是指对表上的多个列进行索引,联合索引也是一棵B+树,不同的是联合索引的键值数量不是1,而是大于等于2. 最左匹配原则 假定上图联合索引的为(a,b)。...联合索引也是一棵B+树,不同的是B+树在对索引a排序的基础上,对索引b排序。所以数据按照(1,1),(1,2)……顺序排放。...a,b)联合索引的。...则不可以使用这棵B+树索引。可以发现叶子节点的b值为1,2,1,4,1,2。显然不是有序的,因此不能使用(a,b)联合索引。...所以,当然是我们能尽量的利用到索引时的查询顺序效率最高咯,所以mysql查询优化器会最终以这种顺序进行查询执行。 优化:在联合索引中将选择性最高的列放在索引最前面。

2.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas索引排序详解

    索引排序-sort_index 针对Pandas中索引的排序功能介绍,详细内容参考官网: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_index.html...axis=1表示列 level:如果是多层索引的排序,表示根据指定的索引进行排序,可以是索引号,名称或者多个索引组成的列表 ascending:排序规则,默认是升序 inplace:表示是否原地修改;默认是...如果是设置成True,则行索引变成0,1,2…N-1 # 默认情况 df.sort_index(axis=1,ignore_index=False) .dataframe tbody tr...0.0 Tom 19 80 shenzhen 1.0 John 28 150 guangzhou 2.0 Ana 20 120 shanghai 参数sort_remaining 如果为 true 且按级别和索引排序是多层...,则按指定级别排序后也按其他级别(按顺序)排序 # 一个来自官网的例子 arrays = [np.array(['qux', 'qux', 'foo', 'foo',

    29530

    数据分析工具Pandas1.什么是Pandas?2.Pandas的数据结构SeriesDataFrame3.Pandas的索引操作索引对象IndexSeries索引DataFrame索引高级索引:标签

    行索引 ser_obj[‘label’], ser_obj[pos] 示例代码: # 行索引 print(ser_obj['b']) print(ser_obj[2]) 运行结果: 1 2 3....切片索引 ser_obj[2:4], ser_obj[‘label1’: ’label3’] 注意,按索引名切片操作时,是包含终止索引的。...,可将其看作ndarray的索引操作 标签的切片索引是包含末尾位置的 ---- 4.Pandas的对齐运算 是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充...Series 按行、索引对齐 示例代码: s1 = pd.Series(range(10, 20), index = range(10)) s2 = pd.Series(range(20, 25), index...38.0 5 NaN 6 NaN 7 NaN 8 NaN 9 NaN dtype: float64 DataFrame的对齐运算 DataFrame按行

    3.9K20

    Pandas 高级教程——多级索引

    Python Pandas 高级教程:多级索引 Pandas 中的多级索引是一种强大的工具,用于处理具有多个维度或层次的数据。多级索引可以在行和列上创建层次结构,提供更灵活的数据表示和分析方式。...在本篇博客中,我们将深入介绍 Pandas 中的多级索引,通过实例演示如何应用这一功能。 1. 安装 Pandas 确保你已经安装了 Pandas。...导入 Pandas 库 在使用 Pandas 之前,首先导入 Pandas 库: import pandas as pd 3....总结 多级索引是 Pandas 中用于处理层次化数据的强大工具,通过多级索引,你可以更灵活地组织和分析数据。在实际应用中,多级索引常用于处理时间序列、多维度数据等场景。...希望这篇博客能够帮助你更好地理解和运用 Pandas 中的多级索引。

    33710

    Pandas-层次化索引

    层次化索引是pandas的一项重要功能,它能使你在一个轴上有多个索引级别,也就是说,它能使你以低维度形式处理高维度数据,比如下面的代码: data = pd.Series(np.random.randn...1, 2, 3]], labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 1, 2]]) 有了层次化索引之后...0.751478 c 1 -0.241329 2 -1.945047 d 2 0.460786 3 -0.411931 dtype: float64 DataFrame的行列索引都可以使用层次化索引...Colorado Green Red Green a 1 0 1 2 2 3 4 5 b 1 6 7 8 2 9 10 11 我们可以创建层次化索引...,sort_index中的level指定了根据哪个索引级别进行排序,sum等汇总统计函数中的level参数指定了根据哪个索引级别进行汇总统计: frame.sort_index(level = 0) frame.sum

    61930

    Pandas数据切片与索引

    01 前言 我们经常让Excel表格数据与Pandas的DataFrame数据做类比学习,而在实际的应用中,我们发现,关于数据的选择是很重要的一部分。...因此,本篇文章就简单介绍几种Pandas数据选择的方法,用最少的知识点,解决最重要的问题。 02 loc和iloc 在对Pandas数据进行操作时,最常用的就是选择部分行和列。...首先为loc,这个根据行和列索引名称来进行选择,例如下面的数据。行索引就是0到6,列索引就是name、course和score。 ? 其用法为loc[行索引,列索引]。...例如,为选择score列可用下面代码,前面我们选择全部行,后面选择score列。 data.loc[:,'score'] 获取第3行(其实是第四行,Python索引从0开始),可用以下代码。...最后iloc用法和loc一样,只是iloc使用行和列的数字索引,也就是说,行索引就是0到6,列索引就是0到2。

    77610

    Pandas 重置索引深度总结

    今天我们来讨论 Pandas 中的 reset_index() 方法,包括为什么我们需要在 Pandas 中重置 DataFrame 的索引,以及我们应该如何应用该方法 在本文我们将使用 Kaggle...上的数据集样本 Animal Shelter Analytics 来作为我们的测试数据 Pandas 中的 Reset_Index() 是什么?...如果我们使用 Pandas 的 read_csv() 方法读取 csv 文件而不指定任何索引,则生成的 DataFrame 将具有默认的基于整数的索引,第一行从 0 开始,随后每行增加 1: import...Normal Dog Neutered Male 4 years Doberman Pinsch/Australian Cattle Dog Tan/Gray 在某些情况下,我们可能希望拥有更有意义的行标签...如果我们需要将原始 DataFrame 重新分配给对其应用 reset_index() 方法的结果,我们可以直接重新分配它(df = df.reset_index())或将参数 inplace=True

    1.4K40
    领券