企业正在寻求以创新方式管理尽可能多的数据及数据源。尽管Hadoop、NoSQL等技术提供了应对大数据问题的具体方法,但是这些技术却可能引入数据孤岛,导致形成关键洞察力所需的数据访问及数据分析复杂化。为了最大化信息价值,更好的处理大数据,企业需要逐步改变数据管理架构,使之变成大数据管理系统,以无缝整合各种来源、所有类型的数据,包括Hadoop、关系数据库以及NoSQL。大数据管理系统在简化所有数据访问的同时,还应该帮助企业利用人员的现有技能,保持企业级数据安全性及数据治理能力,并且保护敏感信息,满足监管要
伴随着秋雨绵绵,我们郑重地向假日告别,从此迎来又一段筑梦的旅程。 刚刚过去的国庆中秋双节,Oracle OpenWorld 2017于美国旧金山隆重开幕,在这场盛大的技术盛宴上,通过来自现场的及时分享,我们感受创新和变革的力量。技术日新月异,无论个人和企业,不变革就面临淘汰。(拉里·埃里森亲自支招,数据库自动化之后,DBA何去何从?) 盖老师从以下五个方面概括了OOW2017的技术要点:云程发轫,扬帆起航;从物联网,到区块链;自治自动,推陈出新;Oracle 18c,明年发布;技术社区,开发者先。 参考:云
一直以来,大数据的使用远远不及大数据收集能力,就起原因主要是目前企业的数据主要分散在不同的系统或组织,大数据战略的杀手锏就是能够更深度的,更丰富的挖掘所有数据系统中的有价值的信息,从而更准确的预测客户行为,发现商业价值,但是目前很难将这些数据移到一个单独的数据存储中,另外,安全和监管问题也得不到保障,Oracle Big Data SQL的推出解决了现在面临的难题。 以下为译文: 发现企业或组织对数据管理架构的需求,Oracle推出Big Data SQL软件来整合包括Hadoop、NoSQL和Oracl
作为国内最具影响力的IT盛会,第五届中国数据库技术大会将于2014年4月10日-12日在北京五洲皇冠假日酒店隆重举行。大会云集国内水平最高的数据库架构师、数据库管理和运维工程师、数据库开发工程师、研发总监和IT经理等技术人群,邀请近百位顶级技术专家和行业领袖分享数据库与大数据技术的最新动态,及其在行业领域里的应用部署和管理经验。 ChinaUnix自测平台针对企业内部数据库及大数据产品的应用现状展开调查。调查活动于2014年1月24日启动,为期40天,共收回线上问卷304份。 主要调查结论: 1.企
一:在Oracle做了六年数据库销售的我从5月份开始内部转到新成立的大数据部门,虽然还没有转完但是已经到新部门上了一个月的班了,如果我说我是Oracle 数据库部门最懂大数据的销售应该没人会反对吧!本周二上班跟负责电信的各路工程师头脑风暴,最后的结论是很让人气馁的,但是昨天和今天跟负责制造业和金融的同事头脑风暴,我真的看到了希望应该说很大的希望,接下来容我一一道来! 二:现在都说大数据,每个行业都在建,但是应该分分类,一种大数据是需求驱动性的,本来就是数据量大,我就想解决现在的问题,这种大数据建设很务
今天谈下大数据平台构建中的数据采集和集成。在最早谈BI或MDM系统的时候,也涉及到数据集成交换的事情,但是一般通过ETL工具或技术就能够完全解决。而在大数据平台构建中,对于数据采集的实时性要求出现变化,对于数据采集集成的类型也出现多样性,这是整个大数据平台采集和集成出现变化的重要原因。
经常听人谈到 OpenJDK,那它到底是什么呢?相信大家都听说过 Java SE、ME、EE等规范, 通常意义上对 Open JDK 的定义指:Java SE规范的一个免费和开源参考实现。
“数字化”是当今社会最先进和最具穿透力的生产力,近十年保持高速发展。围绕“数字化”构筑的数字经济不仅呈现蓬勃发展态势,而且对经济社会发展的贡献越来越大。
<数据猿导读> 在本周(4月16日——4月22日),大数据领域共发生5起投融资事件。其中,承德市政府在京签订了14个大数据产业项目,总投资达205亿元;Oracle甲骨文公司以5000万美元收购大数据
本项目基于大型物流公司研发的智慧物流大数据平台,该物流公司是国内综合性快递、物流服务商,并在全国各地都有覆盖的网点。经过多年的积累、经营以及布局,拥有大规模的客户群,日订单达上千万,如此规模的业务数据量,传统的数据处理技术已经不能满足企业的经营分析需求。该公司需要基于大数据技术构建数据中心,从而挖掘出隐藏在数据背后的信息价值,为企业提供有益的帮助,带来更大的利润和商机
最近比较忙,不过最近间接的获取了不少关于数据流,及数据融合,管道等方面的知识,由于脑子内存小,不写出来很快就会忘记,所以还是硬着头皮写一写。
大数据这个架构,好像产品非常多,对于初学者来说似乎很不友好。于是大家觉得,好像和我们之前的开发很不一样。但实际上和之前的开发是一模一样的。为什么一模一样?
现在很多厂商都说自己的产品是大数据分析软件。如果只是根据功能去区分这些产品,的确是件难事,因为很多工具具有相似的特征和功能。此外,有些工具的差异是非常细微的。所以,关键区分因素可能还是要根据企业的能力以及在数据分析方面的成熟度,重点考虑如何在易用性、算法复杂性和价格之间寻找平衡。 我们将在本文对九个主流大数据分析软件厂商的产品进行对比,即Alteryx、 IBM、KNIME.com、 Microsoft、 Oracle、 RapidMiner、SAP、 SAS 和 Teradata,其中有的厂商提供的工具不
最近间接的获取了不少关于数据流,及数据融合,管道等方面的知识,由于脑子内存小,不写出来很快就会忘记,所以还是硬着头皮写一写。
数据猿导读 京津冀大数据创新应用中心即将投入使用,项目投资达15亿元;美国数据中心供应商CyrusOne将建大型数据中心园区;上海钛米机器人获4000万元融资,医疗机器人成资本“宠儿”……以下为您奉上
<数据猿导读> 本周,大数据领域共发生6起投融资事件,涉及领域包括软件、物流、精准营销,融资金额千万到十亿元不等。以下为您奉上本周投融资事件 一、Oracle(甲骨文)公司拟 5.32 亿美元收购数据分析公司 Opower 近日,Oracle(甲骨文)正式宣布将以以每股10.3美元的价格正式收购Opower公司,共计金额5.32亿美元。据悉,Opower是一家节能数据分析公司,成立于2007年。该公司主要通过对电力大数据的整合、分析,为用户提供实时服务,从而实现节能的目的。目前,Opo
总入口:Oracle DBA常见面试笔试题整理(持续更新):https://www.xmmup.com/oracle-dbachangjianmianshibishitizhengli.html
前面已经给大家讲了《从0到1搭建大数据平台之数据采集系统》、《从0到1搭建大数据平台之调度系统》,今天给大家讲一下大数据平台计算存储系统。大数据计算平台目前主要都是围绕着hadoop生态发展的,运用HDFS作为数据存储,计算框架分为批处理、流处理。
Oracle(甲骨文)公司拟 5.32 亿美元收购数据分析公司 Opower 近日,Oracle(甲骨文)正式宣布将以以每股10.3美元的价格正式收购Opower公司,共计金额5.32亿美元。据悉,O
1月8日,2016大数据生态纵览峰会在北京成功举办。逾千名来自全国各地的大数据行业从业者和业内知名专家、领军企业高管汇聚一堂,共同探讨中国大数据行业的发展现状和未来走向。
本系列文章主要针对ETL大数据处理这一典型场景,基于python语言使用Oracle、aws、Elastic search 、Spark 相关组件进行一些基本的数据导入导出实战,如:
DataX是一个在异构的数据库/文件系统之间高速交换数据的工具,实现了在任意的数据处理系统(RDBMS/Hdfs/Local filesystem)之间的数据交换,由淘宝数据平台部门完成。Sqoop是
本文介绍了大数据推荐系统在广告投放中的应用和实践,包括Facebook、Google、微博、360、腾讯、Oracle等公司的实践案例。文章还介绍了推荐系统架构设计、数据处理、模型训练、实时推荐等方面的技术细节。
以往很多系统经常用的是oracle数据库,在大数据环境下,许多应用都是去IOE的,那么其中老旧数据的迁移或者测试就是其中一块。
昨天和朋友交流,联想起Oracle的两个特性,approx_count_distinct 和 SQL in Silicon,从软件到硬件,从典型SQL入手的优化,Oracle一步一步走向细节和性能的极致。 在Oracle 12c中,有一个新的函数被引入进来 - approx_count_distinct 。这个函数的作用是,当我们进行Count Distinct计算时,给出一个近似值。 TOM说,这个函数会带来5x ~ 50x的性能提升,精度可以达到97%以上。在不需要绝对精确的返回值时,这个函数可以发挥其
Oracle11gR2的具体版本是11.2.0.1.0,适用于64位的Linux平台,包含两个软件包,名称分别为:
相当一部分大数据分析处理的原始数据来自关系型数据库,处理结果也存放在关系型数据库中。原因在于超过99%的软件系统采用传统的关系型数据库,大家对它们很熟悉,用起来得心应手。
对于企业来说,在大数据时代,应该怎么做呢?我的建议是三点:首先,要拥抱大数据技术。其次,企业要有懂大数据的人。最后,要善于利用第三方服务。 本文作者:桑文锋,神策数据创始人&CEO,前百度大数据部技术
了更好帮助企业深入了解国内外最新大数据技术,掌握更多行业大数据实践经验,进一步推进大数据技术创新、行业应用和人才培养,2015年12月10-12日,由中国计算机学会(CCF)主办,CCF大数据专家委员
回顾数据仓库的发展历程,大致可以将其分为几个阶段:萌芽探索到全企业集成时代、企业数据集成时代、混乱时代--"数据仓库之父"间的论战、理论模型确认时代以及数据仓库产品百家争鸣时代。查看原文
【大数据100分】南大通用CTO武新:大数据架构及行业大数据应用〖大数据中级教程〗 主讲嘉宾:武新 主持人:中关村大数据产业联盟 副秘书长陈新河 承办:中关村大数据产业联盟 武新,南大通用高级副总裁兼CTO,法国奥尔良大学和法国国家科研中心博士;南大通用GBASE系列数据库产品的总设计师。在著名的甲骨文公司任职12年,是世界顶级的Oracle数据库专家。2010年获得中组部实施的国家“千人计划”荣誉(海外高层次人才引进计划),是国内基础软件行业唯一入选的数据库技术专家。对目前最新兴的列存储技术、压缩技术
<数据猿导读> 在大数据时代,每家公司都要有自己的大数据部门吗? 结论也不能下的太武断。如果这个问题换做是:在电气时代,每家公司都要有个发电厂吗?是不是会更好回答一些 来源:数据猿 作者:桑文锋 如
文 | 桑文锋 很多大数据创业公司提供的服务,似乎企业自己也能实现,那何不干脆自己做?结论也不能下得太武断。 如果这个问题换做是:在电气时代,每家公司都要有个发电厂吗?是不是会更好回答一些? 事实上每一种重大技术的出现,都会对产业产生大的变化。在蒸汽时代,采矿机采用蒸汽机后,会带来生产效率的极大提升,而轮船加上蒸汽机,再也不需要靠风才能航海了。在电气时代,电灯代替了蜡烛,电报代替了快马送信,而报纸也被广播和电视所侵蚀。 可以说是现有产业加上新技术,形成了新产业。 我们回过头来看这两次工业革命,生产蒸
很多大数据创业公司提供的服务,似乎企业自己也能实现,那何不干脆自己做?结论也不能下得太武断。 如果这个问题换做是:在电气时代,每家公司都要有个发电厂吗?是不是会更好回答一些? 事实上每一种重大技术的出现,都会对产业产生大的变化。在蒸汽时代,采矿机采用蒸汽机后,会带来生产效率的极大提升,而轮船加上蒸汽机,再也不需要靠风才能航海了。在电气时代,电灯代替了蜡烛,电报代替了快马送信, 而报纸也被广播和电视所侵蚀。 可以说是现有产业加上新技术,形成了新产业。 我们回过
进入大数据时代,大数据存储的解决方案,往往涉及到数据仓库的选型策略。从传统时期的数据仓库,到大数据环境下的数据仓库,其核心的技术架构是在随着最新技术趋势而变化的。今天的大数据开发学习分享,我们就来讲讲,大数据环境下的数据仓库。
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
【编者按】随着大数据被更多的企业采用,大数据分析算法编写和生产语言也得到了广泛的关注。而在不知不觉中,开源统计语言R已基本成为大数据科学家和开发者的必备技能。在所有编程语言和技巧中,人气急剧上升。 以下为译文: 通过与大数据工具整合,R提供了大数据集的深度统计能力,包括统计分析以及数据驱动的可视化等。而在金融、药物、媒体及销售这些可直接从数据中获取决策的行业中,R更得到了深度应用。 根据Rexer Analytics 2013年对数据挖掘专业人员的调查显示,R已经成为当下最流行的统计分析工具,至少有70%被
前几天上了水木社区,发现还是有大牛的,看了关于大数据和数据库的讨论,还是蛮有意思的,限于篇幅和版面,我做了部分的提取和整理。 先看看这位人士的分析,对于行业的现状还是很有了解,不是大学教授就是行业先锋。 大数据是一种方案,而不是一种模型。方案有方案的压力, 只能使出各种绝招来“解决”问题。既然是方案,就包括了存贮,运算,输入和输出等等。 就运算模型上,因为要更好地采用廉价硬件,实践出如hadoop/mapreduce这样的计算模型, 还有就是storm,以及其他模型。在存贮方面,也有很大的变化。
T客汇官网:tikehui.com 撰稿 | 杨丽 Workday是全球领先的人力资源和财务规划管理软件供应商,当年因与Oracle一场恶战从此结下梁子,想必众人皆知。 2005年,在PeopleS
Oracle以5000万美元收购大数据公司Crosswise 近日, Oracle(甲骨文公司)宣布已完成对大数据公司Crosswise的收购,成交价在5000万美元左右。据悉,Crosswise是以
内容来源:2017 年 10 月 21 日,深奇智慧联合创始人高扬在“PostgreSQL 2017中国技术大会”进行《基于Greenplum,postgreSQL的大型数据仓库实践》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
要知道,大数据已不再是数据大,最重要的现实就是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。 越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现
在16年8月份至今,一直在努力学习大数据大数据相关的技术,很想了解众多老司机的学习历程。因为大数据涉及的技术很广需要了解的东西也很多,会让很多新手望而却步。所以,我就在自己学习的过程中总结一下学到的内容以及踩到的一些坑,希望得到老司机的指点和新手的借鉴。 前言 在学习大数据之前,先要了解他解决了什么问题,能给我们带来什么价值。一方面,以前IT行业发展没有那么快,系统的应用也不完善,数据库足够支撑业务系统。但是随着行业的发展,系统运行的时间越来越长,搜集到的数据也越来越多,传统的数据库已经不能支撑全量数
新生命团队基础框架X组件,包括网络、数据库、安全、多线程、反射、序列化、模版引擎、服务代理、远程过程调用等模块,包括Mvc后台魔方、超级码神工具、消息队列等子系统,支持Mono/Android/iOS/NetStandard。
<数据猿导读> 当大数据时代来临,各个产业的发展模式正面临着一场前所未有的改革,为加快实施创新驱动发展战略,顺应网络时代大众创业、万众创新的新趋势,促进科技和金融相结合,中国电信灯塔大数据举办“灯塔大数据行业高峰论坛”活动 3月,春暖花开,大数据企业也在竞相绽放!Talking Data University联合中国电信北京研究院等隆重举办中国电信灯塔大数据行业高峰论坛,涵盖“金融”、“电信”、“制造”、“地产”、“汽车”、“人力资源”、“零售”、“安全”、“投融资”等垂直行业的50名嘉宾
在这个AI时代,企业在选择数据库时面临着诸多挑战。本文将深入探讨云数据库、大数据、数据安全、性能优化、成本控制等关键词,旨在帮助不同规模的企业找到最适合自己的数据库解决方案。无论是创业公司、中小企业还是大型企业,都能从中获取宝贵的信息。🌟
HUE是一个开源的Apache Hadoop UI系统,早期由Cloudera开发,后来贡献给开源社区。该web应用的后台采用python编程语言编写的。通过使用Hue我们可以通过浏览器方式操纵Hadoop集群进行交互来分析处理数据。
在当今数据驱动的时代,企业对于数据库的需求愈发复杂多样。为了应对各种业务场景,选择和应用合适的数据库变得至关重要。本文将深入探讨6大数据库技术,并为其在7种常见业务场景下的存储提供更优解。
领取专属 10元无门槛券
手把手带您无忧上云