首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

opencv人脸识别训练「建议收藏」

一开始我运用人脸训练出一个xml文件,后来新增人脸时候需要将新人继续拿来训练,需要将训练的特征信息加在原来xml文件里面。如果程序不关闭是可以将新人特征信息加到xml文件里的。...比如,原来的xml文件为face.xml;现在采集了一些人脸,需要将这些人脸的特征信息提取加入到face.cml;然后下次load这个face.xml进行人脸识别。...现在就是怎么将这些人脸加入原来的xml文件呢?...这个是全局变量定义: static vector images;//头像集 static vector labels;//标签集 训练: model->load(“face0...train_csv图片路径 loadFaceImg(train_csv, images, labels); stringstream s; s<<num; cout<<“加载”+s.str()+”个人脸图片完成

60230

OpenCV人脸识别之二:模型训练

本系列人脸识别文章用的是opencv2,最新版的opencv3.2的代码请参考文章: OpenCV之识别自己的脸——C++源码放送(请在上一篇文章末尾查看) 在该系列第一篇《OpenCV人脸识别之一:数据收集和预处理...1、csv文件的生成 当我们写人脸模型的训练程序的时候,我们需要读取人脸人脸对应的标签。直接在数据库中读取显然是低效的。所以我们用csv文件读取。...2、训练模型 现在数据集、csv文件都已经准备好了。接下来要做的就是训练模型了。 这里我们用到了opencv的Facerecognizer类。...接下来就分别训练这三种人脸模型。这个时候就能体现出Facerecognizer类的强大了。...模型训练的全部代码: //#include "stdafx.h" #include #include #include <fstream

5.4K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    opencv 人脸识别 (二)训练和识别

    上一篇中我们对训练数据做了一些预处理,检测出人脸并保存在\pic\color\x文件夹下(x=1,2,3,…类别号),本文做训练和识别。...为了识别,首先将人脸训练数据 转为灰度、对齐、归一化,再放入分类器(EigenFaceRecognizer),最后用训练出的model进行predict。...—————————————– 环境:vs2010+opencv 2.4.6.0 特征:eigenface Input:一个人脸数据库,15个人,每人20个样本(左右)。...Output:人脸检测,并识别出每张检测到的人脸。 —————————————– 1....为训练数据预处理( 转为灰度、对齐、归一化 ) 转为灰度和对齐是后面做训练时EigenFaceRecognizer的要求; 归一化是防止光照带来的影响 在上一篇的 2.2 Prehelper.cpp文件中加入函数

    1.3K30

    Python+OpenCV实现AI人脸识别身份认证系统(3)—训练人脸识别模型

    目录 案例引入 本节项目 ---- 最近有小伙伴们一直在催本项目的进度,好吧,今晚熬夜加班编写,在上一节中,实现了人脸数据的采集,在本节中将对采集的人脸数据进行训练,生成识别模型。...案例引入 首先简要讲解数据集训练生成模型的原理,这里使用的是LBPH算法,在OpenCV模块中已经有内嵌的方法cv2.face.LBPHFaceRecognizer_create(),为了方便小伙伴们读懂之后的代码...,在这里先举一个简单的人脸模型训练的小案例。...第一步:采集人脸数据,网络上有许多案例Demo,不再赘述,代码如下: import cv2 detector = cv2.CascadeClassifier('C:/Users/Administrator

    2.3K30

    OpenCV人脸检测。

    前段时间断更了好久,一部分原因就是学习OpenCV去了。 OpenCV是一个开源、跨平台的计算机视觉库,可以用于各种图像和视频处理操作。 比如最近写的一篇文章里就发现了计算机视觉的内容。...所以接下来会分享一些关于OpenCV有趣的小案例,毕竟要让学习变得有趣。 本次就来了解一下,如何通过OpenCV人脸进行检测。...其中OpenCV有C++和Python两种,这里当然选用Python啦。 环境什么的,就靠大伙自己去百度了。 / 01 / 图片检测 先来看一下图片检测,原图如下。 ? 是谁我就不说了。...训练数据是现成的,利用现成的数据,通过训练进而来检测人脸。 代码如下。...毕竟训练数据的质量摆在那里,有的时候会出现一些错误。 如想提高检测的精度,便需要一个高质量的人脸数据库。 由于资源有限,我就直接偷懒了。

    1.7K20

    OpenCV 人脸检测(一)

    OpenCV的Haar级联分类器可以通过对比分析相邻图像区域的特征来判断给定图像或子图像与已知对象是否匹配,从而给图像进行分类。提取图像的细节对产生稳定可靠的分类结果很有用。这些提取的结果被称为特征。...例如,Haar级联分离器认为倒置的人脸图像和正立的人脸图像不一样,且认为侧面的人脸图像和正面的人脸图像也不一样。...在OpenCV的源代码的副本中会有一个文件夹 \sources\data\haarcascades。...该文件夹包含了所有OpenCV人脸检测的XML文件,这些文件可用于检测静止图像、视频和摄像头所得到的图像中的人脸。 ? 假设我们已将上述文件夹都拷贝到了项目文件夹中。...opencv_source_code/samples/python/facedetect.py ''' scaleFactor是每次迭代的缩放比例,越小(比1大)越可能检测到更多的人脸,但更可能重复。

    1.8K40

    OpenCV 人脸识别简介

    OpenCV 有三种人脸识别的算法: Eigenfaces 是通过 PCA(主成分分析)实现的,它识别人脸数据集的主成分,并计算出待识别图像区域相对于数据集的发散程度(0~20k),该值越小,表示差别越小...当然,除了这三种预定义的算法外,我们可以自己写深度学习算法或者其他机器学习的分类算法来进行人脸识别,这里不再详述。 不管使用哪种算法都需要有训练集。从视频或者动图创建训练集的效率比较高。...我从网上下载了一些明星的动图,然后分解,检测人脸区域,全部存为200X200的灰度图,存入对应的文件夹中,创建训练集。..., pip install opencv0-contrib-python #创建人脸识别模型(三种识别模式) #model = cv2.face.EigenFaceRecognizer_create...face.FisherFaceRecognizer_create() model = cv2.face.LBPHFaceRecognizer_create() # model.train(X, y) 最后我们将待预测的图像中的人脸区域与训练集中的图像进行比对预测

    1.6K30

    OpenCV实现人脸对齐

    OpenCV实现人脸对齐 一:人脸对齐介绍 在人脸识别中有一个重要的预处理步骤-人脸对齐,该操作可以大幅度提高人脸识别的准确率与稳定性,但是早期的OpenCV版本不支持人脸Landmark检测,因此一般都是通过对人脸进行分割...,然后通过角点检测来寻找眼睛两个角点,连线之后根据它们有水平线的角度,旋转实现人脸对齐之后在提取人脸区域,OpenCV3.x版本开始支持获取Landmark数据,最常见的Landmark数据就是人脸的68...二:人脸对齐代码实现 基于OpenCV实现人脸对齐主要分为如下几步 1.人脸检测器定义与Landmark检测 OpenCV中通过HAAR或者LBP特征实现了人脸检测,最新的OpenCV3.4基于残差网络也实现了人脸检测...,相关的文章可以阅读: OpenCV基于残差网络实现人脸检测 详解LBP特征与应用(人脸识别) 有了人脸之后,我们就可以通过加载预训练的Landmark检测模型,实现Landmark检测,这里使用的模型是局部二值特征...最新的OpenCV3.4 Landmark检测器支持自定义人脸检测器设置,所以只要把我们上面的HAAR/LBP/残差人脸检测器设置过去就会自动检测人脸,然后发现Landmark数据。

    4.3K50

    资源 | 从人脸检测到语义分割,OpenCV训练模型库

    选自GitHub 机器之心编辑 参与:刘晓坤 OpenCV 的 GitHub 页面中有一个称为「open_model_zoo」的资源库,里面包含了大量的计算机视觉预训练模型,并提供了下载方法。...使用这些免费预训练模型可以帮助你加速开发和产品部署过程。...项目地址:https://github.com/opencv/open_model_zoo open_model_zoo 预训练模型概览: 目标检测模型 有几种检测模型可以用于检测一系列最常见的目标。...可以在使用检测模型之后使用这些网络(例如,在人脸检测之后使用年龄/性别识别)。这个列表包含了年龄/性别、头部姿态、车牌号码、汽车属性、情绪、人脸关键点和人物属性等目标的识别模型。 ?...semantic-segmentation-adas-0001 街景图像语义分割应用示例 模型下载:https://github.com/opencv/open_model_zoo/blob/2018

    1.2K30

    使用PaddlePaddle实现人脸对比人脸识别

    ,获得得到了一个训练好的模型,我们将会使用这个模型来进行人脸对比人脸识别。...人脸对比 人脸对比人脸对比其实就是做普通的分类预测,但是输出的不是最后一层全连接层,而是最后一层池化层,这样输出的就是人脸的特征,然后使用对角余弦函数来计算他们的相似度。...利用这种的人脸对比方式,有可以实现人脸识别。...首先我们可以把人脸以注册人脸的方式加入到注册人脸库中,加关联到该人脸的信息; 然后要进行识别时,把要识别的人脸和已注册的人脸库中的人脸进行对比,当对比为识别为同一个人脸,就算识别成功 这样的处理方式好处是...但是如果要加入新的人脸,需要收集大量该用户的人脸,并再次进行训练,得到新的模型。 这样的识别方式,扩展性非常弱,但是识别速度比较快,不需要每张人脸都进行对比

    4.7K21

    使用python3.7和opencv4.1来实现人脸识别和人脸特征比对以及模型训练

    OpenCV4.1已经发布将近一年了,其人脸识别速度和性能有了一定的提高,这里我们使用opencv来做一个实时活体面部识别的demo     首先安装一些依赖的库 pip install...opencv-python pip install opencv-contrib-python pip install numpy pip install pillow      需要注意一点,最好将...if k == 27: #按 'ESC' to quit break cap.release() cv2.destroyAllWindows()      第二步,就是为模型训练收集训练数据...1200: # 得到1000个样本后退出摄像 break # 关闭摄像头 cap.release() cv2.destroyAllWindows()     第三步,对收集下来的人脸数据进行模型训练...,提取特征,训练后,会将特征数据保存在项目目录中的face_trainer文件夹下面 import numpy as np from PIL import Image import os import

    1.7K20

    人脸检测dlib, mtcnnx对比,FDDB测试对比

    前面一直做人脸检测相关内容,然后对比了下dib以及MTCNN的人脸检测效果主要是速度,以及FDDB准确率。最后给出生成FDDB测试文件的C++代码。...可以看到三种方法: MTCNN 大概90% dlib 大概 77% opencv 大概 62% dlib的作者非要说我的测试有问题,如果谁感兴趣可以使用dlib测试下FDDB的结果。...---- 速度 在CPU和GPU模式下,对于三种不同尺寸的图片,运行一千次测试平均的时效: CPU模式 MTCNN(既检测人脸又做landmark): ? dlib (仅仅检测人脸): ?...GPU模式 MTCNN(既检测人脸又做landmark): ? dlib (仅仅检测人脸): ?...可以看到: 在检测精度上MTCNN显然好于dlib 无论是CPU还是GPU模型下MTCNN的检测数度都好于dlib,而且dlib还做了人脸的landmark ---- dlib c++生成FDDB结果代码如下

    3.1K30

    OpenCV人脸识别的原理 .

    在之前讲到的人脸测试后,提取出人脸来,并且保存下来,以供训练或识别是用,提取人脸的代码如下: void GetImageRect(IplImage* orgImage, CvRect rectInImage...所以我将向你说明怎样简单地把彩色图像转化为灰度图像,并且之后简单地使用直方图均衡化(Histogram Equalization)作为一种自动的标准化脸部图像亮度和对比度的方法。...它还把图像调整成了固定的维度,然后应用直方图均衡化来实现固定的亮度和对比度。 PCA原理 现在你已经有了一张经过预处理后的脸部图片,你可以使用特征脸(PCA)进行人脸识别。...OpenCV自带了执行PCA操作的”cvEigenDecomposite()”函数,然而你需要一个图片数据库(训练集)告诉机器怎样识别当中的人。...我们使用“主元分析”把你的200张训练图片转换成一个代表这些训练图片主要区别的“特征脸”集。首先它将会通过获取每个像素的平均值,生成这些图片的“平均人脸图片”。然后特征脸将会与“平均人脸”比较。

    1.1K20
    领券