OpenCV可以检测图像的主要特征,然后提取图像的特征,使其成为图像描述符。 这些图像特征,也就是图像描述符,可以作为图像搜索的数据库。 个人感觉就是,和「以图搜图」有点像。 ?...也是一个很搞笑的片段... / 01 / 特征检测算法 这里简单介绍一下OpenCV常用的几种特征检测和提取算法。 Harris、FAST:用于检测角点的。...提了好几次特征了,那么什么是图像的特征呢? 图像特征就是指有意义的图像区域,具有独特性或易于识别性,比如角点、斑点以及高密度区。 角点可以通过OpenCV的cornerHarris来识别。...剩下的太难了,以后慢慢了解~ / 02 / 图像检索 采用FLANN匹配,近似最近邻的快速库。 原始图片如下,为微博的Logo。 ? 目标图片如下,包含新浪微博的名称。 ? 代码如下。...也就意味着,我们能够利用原始图片(微博logo)从一个包含目标图片的图片库里检索到目标图片(包含微博logo)。 以图搜图,这还是很相似的。 当然,我并不知道以图搜图到底是通过何种办法实现的。
其实这些技术都离不开最基本的图像检索技术。本篇文章我们就将对这一技术的原理进行介绍,并通过一个简单的Python脚本来实现一个最基本的图像检索demo。...▌图像特征 首先我们需要明白图像特征是什么以及它的使用方法。 图像特征是一种简单的图像模式,基于这种模式我们可以描述我们在图像上所看到的内容。...这些算法大多是基于图像梯度的。为了简化安装需求,本教程使用的是KAZE描述符,因为其他描述符在python的基础OpenCV库中没有提供。...file # 将特征向量存于pickled 文件 with open(pickled_db_path, 'w') as fp: pickle.dump(result, fp) OpenCV...Andrey Nikishaev 原文链接:https://towardsdatascience.com/feature-extraction-and-similar-image-search-with-opencv-for-newbies
其实这些技术都离不开最基本的图像检索技术。本篇文章我们就将对这一技术的原理进行介绍,并通过一个简单的Python脚本来实现一个最基本的图像检索demo。...图像特征 首先我们需要明白图像特征是什么以及它的使用方法。 图像特征是一种简单的图像模式,基于这种模式我们可以描述我们在图像上所看到的内容。...这些算法大多是基于图像梯度的。为了简化安装需求,本教程使用的是KAZE描述符,因为其他描述符在python的基础OpenCV库中没有提供。...file # 将特征向量存于pickled 文件 with open(pickled_db_path, 'w') as fp: pickle.dump(result, fp) OpenCV...原文链接: https://towardsdatascience.com/feature-extraction-and-similar-image-search-with-opencv-for-newbies
大规模图像检索特点 无论是对于相同物体图像检索还是相同类别图像检索,在大规模图像数据集上,它们具有三个典型的主要特征:图像数据量大、特征维度高以及要求相应时间短。...得益于多媒体信息捕获、传输、存储的发展以及计算机运算速度的提升,基于内容的图像检索技术经过十几年的发展,其需要适用的图像规模范围也从原来的小型图像库扩大到大规模图像库甚至是海量图像数据集,比如在上世纪九十年代图像检索技术发展的早期阶段...,研究者们在验证图像检索算法性能的时候,用得比较多是corel1k,该图像库共1000张图片,与今天同样可以用于图像检索的最流行的图像分类库imageNet数据集相比,其量级已经有了成千上万倍的增长,因而图像检索应满足大数据时代的要求...图像特征作为直接描述图像视觉内容的基石,其特征表达的好坏直接决定了在检索过程中可能达到的最高检索精度。...— 近似最近邻(ANN, Approximate Nearest Neighbor)搜索方法,并提出了很多高效的检索技术,其中最成功的方法包括基于树结构的图像检索方法、基于哈希的图像检索方法和基于向量量化的图像检索方法
基于内容的图像检索技术 ? 相同物体图像检索 相同物体图像检索是指对查询图像中的某一物体,从图像库中找出包含有该物体的图像。...相同物体检索不论是在研究还是在商业图像搜索产业中都具有重大的价值,比如购物应用中搜索衣服鞋子、人脸检索等。...相同类别图像检索 对给定的查询图片,相似图像检索的目标是从图像库中查找出那些与给定查询图像属于同一类别的图像。...相同类别图像检索目前已广泛应用于图像搜索引擎,医学影像检索等领域。 对于相同类别图像检索,面临的主要问题是属于同一类别的图像类内变化巨大,而不同类的图像类间差异小。...,能够降低的维度还是有限的,因而对于这一类图像检索,同样有必要为它构建够高效合理的快速检索机制,使其适应大规模或海量图像的检索。
基于树的图像检索方法将图像对应的特征以树结构的方法组织起来,使得在检索的时候其计算复杂度降到关于图像库样本数目n的对数的复杂度。基于树结构的搜索方法有KD-树8、M-树9等。...此外,基于树结构的检索方法在构建树结构的时候其占用的存储空间往往要比原来的数据大得多,并且对数据分布敏感,从而使得基于树结构的检索方法在大规模图像数据库上也会面临内存受限的问题。...相比基于树结构的图像检索方法,基于哈希的图像检索方法由于能够将原特征编码成紧致的二值哈希码,使得基于哈希的图像检索方法能够大幅的降低内存的消耗,并且由于在计算汉明距离的时候可以使用计算机内部运算器具有的...基于哈希的图像检索方法其关键之处在于设计一个有效的哈希函数集,使得原空间中的数据经过该哈希函数集映射后,在汉明空间其数据间的相似性能够得到较好的保持或增强。...在面向大规模图像检索时,除了采用图像哈希方法外,还有另一类方法,即向量量化的方法,向量量化的方法中比较典型的代表是乘积量化(PQ, Product Quantization)方法,它将特征空间分解为多个低维子空间的笛卡尔乘积
针对这些包含丰富视觉信息的海量图片,如何在这些浩瀚的图像库中方便、快速、准确地查询并检索到用户所需的或感兴趣的图像,成为多媒体信息检索领域研究的热点。...图像检索按描述图像内容方式的不同可以分为两类,一类是基于文本的图像检索(TBIR, Text Based Image Retrieval),另一类是基于内容的图像检索(CBIR, Content Based...随着图像数据快速增长,针对基于文本的图像检索方法日益凸现的问题,在1992年美国国家科学基金会就图像数据库管理系统新发展方向达成一致共识,即表示索引图像信息的最有效方式应该是基于图像内容自身的。...自此,基于内容的图像检索技术便逐步建立起来,并在近十多年里得到了迅速的发展。...基于内容的图像检索技术将图像内容的表达和相似性度量交给计算机进行自动的处理,克服了采用文本进行图像检索所面临的缺陷,并且充分发挥了计算机长于计算的优势,大大提高了检索的效率,从而为海量图像库的检索开启了新的大门
图像检索评价指标 1. Precision & Recall & F-Score ---- image.png 2.
图像的翻转 flip(src,flipCode) flipCode = 0 表示上下翻转 flipCode > 0 表示左右翻转 flipCode < 0 上下 + 左右 上下翻转 import...)) cv2.imshow('lufei',img) cv2.imshow("lu,",lufei) cv2.waitKey(0) cv2.destroyAllWindows() 显示结果: 图像的翻转
显示图像 导入库: import cv2 import matplotlib.pyplot as plt 读取图片: cv2.imread('图片路径') 显示图片: plt.imshow...原因:opencv读取的图片的颜色通道不是标准的RGB(红绿蓝),而是BGR(蓝绿红)的排列顺序,所以读取到的图片的颜色与原始图片的颜色会发生差别! ...所以,我们尽量用我们的opencv自己去展示opencv读入道德图片 opencv读取并显示图像 import cv2 #导入cv2库 cv2.namedWindow('tupian',cv2.WINDOW_NORMAL
概述 有时候,我们需要使用Matplotlib库强大的绘图函数来在numpy.ndarray格式的图像上进行一些可视化,比如关键点绘制,投影点绘制。...有时候为了可视化的美观,需要验证保证转换后的图像与原始图像大小一致。这里记录一下操作的流程,以及一些常遇到的问题。 2....函数来将图像转换为string,在用numpy的fromstring函数将string转换为np.ndarray,即为我们所求。...示例代码如下: import cv2 import matplotlib.pyplot as plt import numpy as np # 读取 numpy.ndarray格式的图像 img =...此外由于matploltlib的imshow需要RGB格式的图像,而OpenCV图像格式为BGR,需要做转换。 4.
基础概念 VLAD是vector of locally aggregated descriptors的简称,是由Jegou et al.在2010年提出,其核心思想是aggregated(积聚),主要应用于图像检索领域...1.2 相关方法优缺点 在深度学习时代之前,图像检索领域以及分类主要使用的常规算法有BoW、Fisher Vector及VLAD等。...方法的核心思想是提取出关键点描述子后利用聚类的方法训练一个码本,随后每幅图片中各描述子向量在码本中各中心向量出现的次数来表示该图片,该方法的缺点是需要码本较大;FV方法的核心思想是利用高斯混合模型(GMM),通过计算高斯混合模型中的均值、协方差等参数来表示每张图像...1.3 VLAD算法 VLAD算法可以看做是一种简化的FV,其主要方法是通过聚类方法训练一个小的码本,对于每幅图像中的特征找到最近的码本聚类中心,随后所有特征与聚类中心的差值做累加,得到一个k*d的vlad...PCA降维并对其归一化 *(5) 得到VLAD后,使用ADC方法继续降低储存空间和提高搜索速度 其中步骤4、5可选,在步骤3得到残差累加向量后进行L2归一化即可用欧氏距离等计算两张图片的相似性从而实现图片检索
关于比较加密技术,看了一篇论文,《移动云环境下密文图像检索技术研究》,里面提到的比较加密技术不是很了解,很多困惑,想针对此方案作出点修改,不知如何下手?
1、使用opencv保存图像cv2.imwrite(存储路径,图像变量[,存盘标识])存盘标识: cv2.CV_IMWRITE_JPEG_QUALITY 设置图片格式为.jpeg或者.jpg的图片质量
图像融合 背景:图像融合是图像处理的一个基本问题,目的是将源图像中一个物体或者一个区域嵌入到目标图像生成一个新的图像。在对图像进行合成的过程中,为了使合成后的图像更自然,合成边界应当保持无缝。...但如果源图像和目标图像有着明显不同的纹理特征,则直接合成后的图像会存在明显的边界。 引入:基于泊松方程而引入的泊松融合求解像素最优值的方法,在保留了源图像梯度信息的同时,融合源图像与目标图像。...对比传统图像融合和泊松融合 传统的图像融合: 精确地选择融合区域:过程单调乏味且工作量大,常常无法得到好的结果。 Alpha-Matting:功能强大,但是实现复杂。...变分法的解释泊松图像编辑 表示融合图像块的梯度。...变分方程的意义表明我们的无缝融合是以源图像块内梯度场为指导,将融合边界上目标场景和源图像的差异平滑地扩散到融合图像块 I 中,这样的话,融合后的图像块能够无缝地融合到目标场景中,并且其色调和光照可以与目标场景相一致
OpenCV旋转图像 要用到这两个函数: M = cv2.getRotationMatrix2D((cx, cy), angle, 1) # 旋转中心,角度degree,放大比例 image = cv2...10 resized = cv2.resize(copied, (rows // K, cols // K)) domain = connected_domain(resized, 20) # 缩小图像...,以便加速图像分割 for label in domain: if (area := len(domain[label])) < 1440000 // (K * K): continue
转换灰度图像 1.1 读取图像 import cv2 as cv # 读取图片 img = cv.imread('...../Resources/Photos/park.jpg') cv.imshow('Park', img) 1.2 使用OpenCV # 灰度化 gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY...= array(Image.open("Resources/Photos/park.jpg").convert('L')) im2 = 255 - im # 对图像进行反相处理... im3 = (100.0/255) * im + 100 # 将图像像素值变换到 100...200 区间 im4 = 255.0 * (im/255.0)**2 # 对图像像素值求平方后得到的图像...参考 python图像数组操作与灰度变换
frame就是每一帧的图像,是个三维矩阵。...表示视频的每一帧,1表示水平方向翻转,可以选择不同形式的反转,比如,0 — 垂直方向翻转;-1:水平、垂直方向同时翻转 waitKey()方法本身表示等待键盘输入,参数是1,表示延时1ms切换到下一帧图像...,对于视频而言;参数为0,如cv2.waitKey(0)只显示当前帧图像,相当于视频暂停,;参数过大如cv2.waitKey(1000),会因为延时过久而卡顿感觉到卡顿。
Retrieval 简要介绍CBIR系统流程 Deep Image Retrieval: Learning global representations for image search(很有意思,包括了目标检测和检索...) 基于多层 CNN 特征的图像检索技术 Paper: awesome-cbir-papers Paper: Three things everyone should know to improve object
图像检索(Image Retrieval)入门概述图像检索是一项重要的计算机视觉任务,它旨在根据用户的输入(如图像或关键词),从图像数据库中检索出最相关的图像。...图像检索技术在许多领域中有着广泛的应用,如图像搜索引擎、图像版权认证、医学影像分析等。 这篇博客将带您入门图像检索的基本概念、方法和常用的技术。特征提取在图像检索中,特征提取是关键的一步。...常见的图像检索方法除了上述特征提取和相似度度量方法外,还有许多图像检索方法在研究和应用中得到广泛的使用。以下是一些常见的图像检索方法:1....示例代码:基于颜色直方图的图像检索下面是一个基于颜色直方图的图像检索的示例代码,该代码演示了如何计算图像的颜色直方图并使用直方图差异度量方法进行图像检索。...该示例代码使用Python编写,并使用OpenCV和numpy库进行图像处理和计算。
领取专属 10元无门槛券
手把手带您无忧上云