本期将介绍如何通过图像处理从低分辨率/模糊/低对比度的图像中提取有用信息。 下面让我们一起来探究这个过程: 首先我们获取了一个LPG气瓶图像,该图像取自在传送带上运行的仓库。...步骤1:导入必要的库 import cv2 import numpy as np import matplotlib.pyplot as plt 步骤2:加载图像并显示示例图像。...) 步骤4:找到灰度图像的直方图后,寻找强度的分布。...该算法通过创建图像的多个直方图来工作,并使用所有这些直方图重新分配图像的亮度。CLAHE可以应用于灰度图像和彩色图像。有2个参数需要调整。 1. 限幅设置了对比度限制的阈值。...在OpenCV中,自适应阈值处理由cv2.adapativeThreshold()函数执行 此功能将自适应阈值应用于src阵列(8位单通道图像)。
Opencv简介及涉及领域 Opencv是一个计算机视觉库,Opencv所提供的函数能非常高效的实现计算机视觉算法。...同时Opencv的应用领域非常广泛,包括图像的拼接、图像的降噪、产品质检、人机交互、人脸识别、动作识别、动作跟踪、无人驾驶以及图像诊断等等 Opencv模块的安装及其常用函数 Opencv的安装 这里我们简单谈一下使用...Anaconda Prompt安装Opencv,命令如下: conda install opencv 图像的读取/分割/展示/保存 (1)、导入模块 import cv2 #这里要注意引入模块时导入的包名是...图像坐标轴如下: ?...如果大家对图像数据增强有兴趣可以关注微信公众号和我们一起学习。
上面这幅黑乎乎的图就是我们今天要处理的图片,这是书的一页,但特别特别黑,对于这种因为阴影而导致的细节缺失,我们就可以尝试对其进行图像增强了。...图像增强真的有不少内容,范围也很广泛,今天就只针对这个例子进行实践了。...本文代码都是成块儿的,大家可以复制自行组合 整体框架搭建 首先就先写个框架啦,读取图片显示图片啥的: #include #include ...直方图均衡化 直方图均衡化是常见的一种图像增强技术,直方图均衡可以让像素值由狭小区域扩大到整个像素区域,如下图,横轴为像素灰度值,竖轴为该像素值在图片中的比例: 左图在直方图均衡化之后,像素值有明显的扩散分布...调整亮度和对比度 我们可以遍历图片中(i , j)处的像素,并对其进行如下操作: f(i,j)代表原图像像素 g(i,j)代表处理后的图像像素 a 称为增益,用来调节图像对比度 b 称为偏置,用来调整图像亮度
C++代码: #include #include using namespace cv; using namespace std; void
美国物理学家埃德温∙兰德(Edwin Land) 在 1971 年提出一种被称为色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。...根据 Retinex 理论,它会将一幅给定的图像 S(x,y) 分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像 L(x,y)。可以表示为: ? 其原理如下所示: ?...Retinex图像增强处理步骤如下: 利用取对数的方法将照射光分量和反射光分量分离: ?...在对数域中,用原图像减去低通滤波图像,得到高频增强的图像G(x,y)。 ? 对G(x,y)取反对数,得到增强后的图像: ? 对R(x,y)做对比度增强,得到最终的结果图像。...//高斯模糊,当size为零时将通过sigma自动进行计算 GaussianBlur(doubleImage, gaussianImage, Size(0, 0), sigma); //OpenCV
Syntax flip(src, flipCode[, dst]) args flipCode Anno 1 水平翻转 0 垂直翻转 -1 水平垂直翻转 Demo Original Image 原图像
图像增强前期知识 图像增强是图像模式识别中非常重要的图像预处理过程。...图像增强按实现方法不同可分为点增强、空域增强和频域增强。 1、点增强 点增强主要指图像灰度变换和几何变换。...因此,根据需要可以分别增强图像的高频和低频特征。对图像的高频增强可以突出物体的边缘轮廓,从而起到锐化图像的作用。例如,对于人脸的比对查询,就需要通过高频增强技术来突出五宫的轮廓。...相应地,对图像的低频部分进行增强可以对图像进行平滑处理,一般用于图像的噪声消除。 3、频域增强 图像的空域增强一般只是对数字图像进行局部增强,而图像的频域增强可以对图像进行全局增强。...#include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui
一、python+opencv3.2安装 opencv在windows安装为啥这么简单?...安装流程: 1、下载opencv文件opencv-3.2.0-vc14.exe 2、点击下载,其实就是解压过程,随便放在一个盘里面。...三、用python+keras/theano进行图像增强(Data Augmentation) 1、图像增强的方式 以下一共有8中图像变换的方式: 旋转 | 反射变换(Rotation/reflection...): 在训练集像素值的RGB颜色空间进行PCA, 得到RGB空间的3个主方向向量,3个特征值 . 2、图像增强的案例 网上有一个极为广泛的套路,参考博客《深度学习中的Data Augmentation...,里面包含了很多类型的增强方法 load_img、img_to_array、x.reshape图像载入函数 datagen.flow,增强执行函数 其中: load_img函数: load_img
这篇文章是DIP的第二次作业,对图像增强技术进行综述,目录如下: Point Operations Image Negative Contrast Stretching Compression of...该函数增强了图像的对比度,显示了均匀的强度分布。 实验结果: ?...(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。...图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围像元之间的反差,因此也被称为边缘增强。实验用的sobel算子对图像进行锐化。 实验结果: ?...,它依靠图像的照度/ 反射率模型作为频域处理的基础,利用压缩亮度范围和增强对比度来改善图像的质量。
//写回图像 ? outImage->SetPixelRGB(x,y,r,g,b); ? } ? } ? } ?...同样,也有5x5,7x5等等的模板,模板越大,处理后的图像就越模糊 2. 0 -1 0 -1 4 -1 0 -1 0 这是另一种模板,是为了增强当前像素与周围像素的差别,产生的效果就是:锐化...//增强 ? COLORREF pixel = srcImage->GetPixel(x,y); ? //r += GetRValue(pixel); ?...//写回图像 ? outImage->SetPixelRGB(x,y,r,g,b); ? } ? } ?...:s=cLog(1+r),可以扩展被压缩的高值图像中的暗像素 幂次变换:s=cr^γ,这就是传说中的伽马校正!
数字图像的诞生并不是与计算机的发展完全相关,第一次世界大战结束后的第二年,数字图像被发明并用于报纸行业。为了当时传输此图像,发明了Bartlane电缆图像传输系统。...成功绘制月球表面图可以被认为是最早的数字图像处理。 01.图像直方图 直方图通常可以为我们提供一些优化图像的方法。...如果我们使用灰度变换将灰度值扩展到整个0-255间隔,则对比度明显得到了增强。...当图像直方图完全均匀分布时,图像的熵最大,图像对比度高。提高图像对比度的变换函数f(x)需要满足以下条件: 其中p_x代表的概率密度函数。在离散图像中,它表示直方图每个灰度级的概率。...• 将累积直方图应用于图像像素的值 06.伽马校正 伽玛校正是对图像的非线性操作,用于检测图像信号部分和浅色部分中的暗色,并增加二者的比率以提高图像对比度效果。
图像处理_Retinex图像增强 单尺度SSR (Single Scale Retinex) 图像S(x,y)分解为两个不同的图像:反射图像R(x,y),入射图像L(x,y) 图像可以看做是入射图像和反射图像构成...我们把照射图像假设估计为空间平滑图像,原始图像为S(x, y),反射图像为R(x, y),亮度图像为L(x, y),使用公式 r(x,y)=logR(x,y)=log\frac{S(x,y)}{L(x,...多尺度MSR (Multi-Scale Retinex) MSR是在SSR基础上发展来的,优点是可以同时保持图像高保真度与对图像的动态范围进行压缩的同时,MSR也可实现色彩增强、颜色恒常性、局部动态范围压缩...、全局动态范围压缩,也可以用于X光图像增强。...MSRCR (Multi-Scale Retinex with Color Restoration) SSR和MSR普遍都存在明显的偏色问题 MSRCR在MSR的基础上,加入了色彩恢复因子C来调节由于图像局部区域对比度增强而导致颜色失真的缺陷
outImage->SetPixelRGB(x,y,r,g,b); } } } 同样,也有5x5,7x5等等的模板,模板越大,处理后的图像就越模糊...2. 0 -1 0 -1 4 -1 0 -1 0 这是另一种模板,是为了增强当前像素与周围像素的差别,产生的效果就是:锐化 此时的模板叫Laplacian模板,当然,这不是唯一的一种形式,例如...Laplacian[sharpType][index]; index++; } } //增强...,可以扩展被压缩的高值图像中的暗像素 幂次变换:s=cr^γ,这就是传说中的伽马校正!...0 : b; //写回图像 outImage->SetPixelRGB(x,y,r,g,b); } } }
import numpy as np import matplotlib.pyplot as plt img=cv2.imread('C:/Users/xpp/Desktop/Lena.png')#读取图像...centerY=cols/2 print(centerX,centerY) radius=min(centerX,centerY) print(radius) #设置光照强度 strength=200 #图像光照特效...G=img[i,j][1] R=img[i,j][2] if (distance<radius*radius): #按照距离大小计算增强光照值...cv2.imwrite('C:/Users/xpp/Desktop/result.png', img) plt.imshow(img) plt.show() 230.0 230.0 230.0 算法:图像光照增强是以图像为圆心...,根据像素点与圆心的距离来进行不同程度光照增强。
傅立叶反变换 把处理过的频率域结果反变换成图像 如上上述指纹图像经过三个低通滤波器后的结果: ?
概述 有时候,我们需要使用Matplotlib库强大的绘图函数来在numpy.ndarray格式的图像上进行一些可视化,比如关键点绘制,投影点绘制。...有时候为了可视化的美观,需要验证保证转换后的图像与原始图像大小一致。这里记录一下操作的流程,以及一些常遇到的问题。 2....函数来将图像转换为string,在用numpy的fromstring函数将string转换为np.ndarray,即为我们所求。...示例代码如下: import cv2 import matplotlib.pyplot as plt import numpy as np # 读取 numpy.ndarray格式的图像 img =...此外由于matploltlib的imshow需要RGB格式的图像,而OpenCV图像格式为BGR,需要做转换。 4.
图像的翻转 flip(src,flipCode) flipCode = 0 表示上下翻转 flipCode > 0 表示左右翻转 flipCode < 0 上下 + 左右 上下翻转 import...)) cv2.imshow('lufei',img) cv2.imshow("lu,",lufei) cv2.waitKey(0) cv2.destroyAllWindows() 显示结果: 图像的翻转
图像融合 背景:图像融合是图像处理的一个基本问题,目的是将源图像中一个物体或者一个区域嵌入到目标图像生成一个新的图像。在对图像进行合成的过程中,为了使合成后的图像更自然,合成边界应当保持无缝。...但如果源图像和目标图像有着明显不同的纹理特征,则直接合成后的图像会存在明显的边界。 引入:基于泊松方程而引入的泊松融合求解像素最优值的方法,在保留了源图像梯度信息的同时,融合源图像与目标图像。...对比传统图像融合和泊松融合 传统的图像融合: 精确地选择融合区域:过程单调乏味且工作量大,常常无法得到好的结果。 Alpha-Matting:功能强大,但是实现复杂。...变分法的解释泊松图像编辑 表示融合图像块的梯度。...变分方程的意义表明我们的无缝融合是以源图像块内梯度场为指导,将融合边界上目标场景和源图像的差异平滑地扩散到融合图像块 I 中,这样的话,融合后的图像块能够无缝地融合到目标场景中,并且其色调和光照可以与目标场景相一致
1、使用opencv保存图像cv2.imwrite(存储路径,图像变量[,存盘标识])存盘标识: cv2.CV_IMWRITE_JPEG_QUALITY 设置图片格式为.jpeg或者.jpg的图片质量
转换灰度图像 1.1 读取图像 import cv2 as cv # 读取图片 img = cv.imread('...../Resources/Photos/park.jpg') cv.imshow('Park', img) 1.2 使用OpenCV # 灰度化 gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY...= array(Image.open("Resources/Photos/park.jpg").convert('L')) im2 = 255 - im # 对图像进行反相处理... im3 = (100.0/255) * im + 100 # 将图像像素值变换到 100...200 区间 im4 = 255.0 * (im/255.0)**2 # 对图像像素值求平方后得到的图像...参考 python图像数组操作与灰度变换
领取专属 10元无门槛券
手把手带您无忧上云