为了构建用于理解COVID-19的多样发展的全面模型,我将应用分析时间序列模型来评估新冠病毒住院患者的人数增长。时间序列模型的常见要求是平滑,是用于消除数据噪声的常用技术。在这个背景下,我们的目标是了解在有数据噪声的基本情况下,是否存在新冠病人住院治疗数量的平稳增长过程。
▌SqueezerFaceNet: Reducing a Small Face Recognition CNN Even More Via Filter Pruning
“问渠那得清如许,为有源头活水来”,通过前沿领域知识的学习,从其他研究领域得到启发,对研究问题的本质有更清晰的认识和理解,是自我提高的不竭源泉。为此,我们特别精选论文阅读笔记,开辟“源头活水”专栏,帮助你广泛而深入的阅读科研文献,敬请关注!
选自arXiv 机器之心编译 参与:刘晓坤、路雪 DeepMind 联合 CMU 近日提出一种结合模型结构分层表示和进化策略的高效架构搜索方法,通过比较人工设计的架构、使用强化学习找到的架构、使用随
查询优化器的任务是发现执行 SQL 查询的最佳方案。大多数查询优化器,要么基于规则、要么基于成本。
本月初,来自 MIT 等机构的研究者提出了一种非常有潜力的 MLP 替代方法 ——KAN。
Scalable Differentially Private Clustering via Hierarchically Separated Trees
选自 OpenAI 作者:Durk Kingma、Scott Gray、Alec Radford 机器之心编译 参与:黄小天、刘晓坤 近日,OpenAI 在其一篇题为《Block-Sparse GPU Kernels》的博文中发布了一个低级别神经网络架构的高度优化 GPU 内核,并且这个神经网络带有「块稀疏」(block-sparse)权重。根据已选的稀疏性,这些内核可以比 cuBLAS 或 cuSPARSE 运行快几个数量级,并在文本情感分析与文本、图像生成建模方面取得了当前最优结果。机器之心对博文进行了
选自Baidu Research 机器之心编译 参与:刘晓坤、许迪 语音复制(voice cloning)是个性化语音接口的非常急需的功能。在此论文中,百度介绍了一种能以少量音频样本作为输入的神经语音复制系统。 在百度研究院,我们的目标是用最新的人工智能技术革新人机交互界面。我们的 Deep Voice 项目在一年前启动,致力于教会机器从文本生成更加类人的语音。 通过超越单个说话者语音合成的局限,我们证明了单个系统可以学习生成几千个说话者身份,每个说话者只需要少于半小时的训练数据。我们通过在说话者之间学习共
文章探讨了掩码语言模型(MLMs,例如BERT和DeBERTa)在上下文学习(in-context learning)方面的能力,挑战了普遍观点,即这种能力在这些模型中不会“显现”。作者意图证明,即使没有额外的训练,MLMs也能够展现出与著名的GPT-3相当的生成能力。
要说 ChatGPT 拉开了大模型竞赛的序幕,那么 Meta 开源 Llama 系列模型则掀起了开源领域的热潮。在这当中,苹果似乎掀起的水花不是很大。
机器之心报道 编辑:杜伟、陈萍 给定固定的 FLOPs 预算,应该如何权衡模型大小和训练 token 的数量?DeepMind 得出了与先前不同的结论。 最近一系列大型语言模型 (LLM) 正在崛起,其中最大的语言模型已经拥有超过 5000 亿个参数。这些大型自回归 transformer 通过使用各种评估协议(例如零样本、少样本和微调),在许多任务中表现出令人印象深刻的性能。 然而训练大型语言模型需要消耗巨大的计算和能源,并且这种消耗随着模型的增加而增加。在实践中,研究者事先分配的训练计算预算通常是预先知
在医学成像中,分割是一项关键且经常执行的活动,它允许提取关于感兴趣区域的精确结构信息。手动分割既繁琐又耗时,并且需要经验丰富的专家和医生才能得到准确的结果,因此在医学诊断中构建自动分割框架是一项紧迫的任务。近年来,在包括目标识别、图像分割和图像分类在内的多种计算机视觉任务中,深度学习模型已经超越了传统技术[1, 2, 3]。在医学图像识别中,自动化学习过程的应用越来越受欢迎。在医学图像分析领域,分割模型可以帮助缩短从图像(如脑肿瘤[4, 5, 6]、脑部[7]、心脏磁共振图像中的左心室[8, 9]、皮肤镜下的皮肤病变[10, 11]、细胞显微镜图像[12, 13]、耳镜鼓膜图像[14]、整个心脏[7])中确定受损区域和感兴趣组织的时间,从而在目标勾勒过程中最小化人的主观错误,并帮助医生为患者做出准确的诊断以及制定有效的治疗方案。
默认情况下,PHP是按值传递参数的。值传递参数调用函数时将常量或变量的值(通常称其为实参)传递给函数的参数(通常称为形参)。值传递的特点是实参与行参分别存储在内存中,是两个不相关的独立变量。因此,在函数内部改变形参的值时,实参的值一般是不会改变的。
这个中文教程是原始资料的关键内容过一遍,以帮助自己的研究和学习。如果对R不熟悉,推荐学习 Introduction to R[1]。
方法重载是Java中一个重要的概念,它允许在同一类中编写多个具有相同名称但参数不同的方法。这种技术使代码更清晰,易于维护,并使代码更加灵活,因为您可以根据需要选择使用不同的方法。在运行时,Java编译器通过参数类型和数量选择最合适的版本来调用方法。然而,尽管方法重载能够使代码组织得更好,但计算机必须在运行时确定哪个方法最有效,并且这可能会影响性能。下面将探讨如何评估方法重载的性能优劣。
摘要:参数高效微调(PEFT)是一种流行的方法,用于裁剪预训练的大型语言模型(LLM),特别是随着模型规模和任务多样性的增加。低秩自适应(LoRA)基于自适应过程本质上是低维的想法,即,显著的模型变化可以用相对较少的参数来表示。然而,与全参数微调相比,降低秩会遇到特定任务的泛化错误的挑战。我们提出了MELoRA,一个迷你合奏低秩适配器,使用较少的可训练参数,同时保持较高的排名,从而提供更好的性能潜力。其核心思想是冻结原始的预训练权重,并训练一组只有少量参数的迷你LoRA。这可以捕获迷你LoRA之间的显著程度的多样性,从而促进更好的泛化能力。我们对各种NLP任务进行了理论分析和实证研究。我们的实验结果表明,与LoRA相比,MELoRA在自然语言理解任务中的可训练参数减少了8倍,在指令跟随任务中的可训练参数减少了36倍,从而实现了更好的性能,这证明了MELoRA的有效性。
大多数数字营销活动,包括搜索引擎优化(SEO),点击付费(PPC),展示广告,以及其它数字营销方式都无法很好的验证转化率。这成了销售团队的额外负担,降低了生产率和关闭率。在你的市场活动中添加一个验证过程将会使你的销售团队更加高效。
作者:Xindian Ma、Peng Zhang、Shuai Zhang、Nan Duan、Yuexian Hou、Dawei Song、Ming Zhou
在深度学习中,视觉Transformer(ViTs)已成为一种主流的卷积神经网络架构,被广泛应用于计算机视觉领域。预训练的ViT模型通常通过finetuning适应到新的任务,但是fine-tuning需要消耗大量的计算和内存资源。为了减少fine-tuning所需的资源和时间,许多参数高效的迁移学习方法被提出,例如Adapter(adapters)。
声音分类可能是一项艰巨的任务,尤其是当声音样本的变化很小而人耳无法察觉时。机器的使用以及最近的机器学习模型已被证明是解决声音分类问题的有效方法。这些应用程序可以帮助改善诊断,并已成为心脏病学和肺病学等领域的研究主题。卷积神经网络识别COVID-19咳嗽的最新创新以及使用咳嗽记录来检测无症状COVID-19感染的MIT AI模型(https://news.mit.edu/2020/covid-19-cough-cellphone-detection-1029)显示出仅凭咳嗽声就可识别COVID-19患者的一些令人鼓舞的结果。综观这些参考资料,这项任务可能看起来颇具挑战性,就像只有顶尖研究人员才能完成的任务一样。在本文中,我们将讨论如何使用Wolfram语言中的机器学习和音频功能获得这非常有希望的结果。
在之前的课程中,我分别从数据库、缓存、消息队列和分布式服务化的角度,带你了解了面对高并发的时候要如何保证系统的高性能、高可用和高可扩展。课程中虽然有大量的例子辅助你理解理论知识,但是没有一个完整的实例帮你把知识串起来。所以,为了将我们提及的知识落地,在实战篇中,我会以微博为背景,用两个完整的案例带你从实践的角度应对高并发大流量的冲击,期望给你一个更加具体的感性认识,为你在实现类似系统的时候提供一些思路。
作者: Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao
在前面的文章中,我们讨论了数据包络分析技术,我们已经看到它如何被用作一个有效的非参数排序算法。在这篇博文中,我们将实现一个JAVA数据包络分析的实例,我们将用它来评估网页上的网页和文章的社交媒体流行度。该代码是开源的(在GPL v3许可下),您可以从Github免费下载。
隐式神经表征 (INRs) 已经成为一种很有前景的表示各种数据模式的方法,包括3D形状、图像和音频。虽然最近的研究已经证明了 INRs 在图像和 3D 形状压缩方面的成功应用,但它们在音频压缩方面的潜力仍未得到充分开发。基于此,本文提出了一项关于使用 INRs 进行音频压缩的初步研究。
我们使用广义线性模型(Generalized Linear Models,简称GLM)来研究客户的非正态数据,并探索非线性关系(点击文末“阅读原文”获取完整代码数据)。
1×1卷积可以用来干什么?本文设计了一种完全基于1×1卷积的极简深度神经网络,实现了轻量图像超分辨率重建。
近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显著的成功。然而,作为许多下游任务的基础模型,当前的 MLLM 由众所周知的 Transformer 网络构成,这种网络具有较低效的二次计算复杂度。为了提高这类基础模型的效率,大量的实验表明:(1)Cobra 与当前计算效率高的最先进方法(例如,LLaVA-Phi,TinyLLaVA 和 MobileVLM v2)具有极具竞争力的性能,并且由于 Cobra 的线性序列建模,其速度更快。(2)有趣的是,封闭集挑战性预测基准的结果显示,Cobra 在克服视觉错觉和空间关系判断方面表现良好。(3)值得注意的是,Cobra 甚至在参数数量只有 LLaVA 的 43% 左右的情况下,也取得了与 LLaVA 相当的性能。
上一篇文章《wide&deep 在贝壳推荐场景的实践[1]》中,我们介绍了贝壳首页推荐展位使用的 Wide & Deep 模型,本文向大家介绍贝壳房源详情页推荐展位使用的 DeepFM 模型。
初次接触 TiDB,是通过同程网首席架构师王晓波先生的分享,当时同程网正在使开发和数据库全面往开源方向转型,由于业务需要,很多在线业务数据量和访问量都非常的大,而 MySQL 无法满足大数据量下的复杂查询需求,为了使数据库分片对开发透明,同程自研了 DBrouter 。但分片后的合并、实时汇总统计及全量数据的监控仍然是困扰我们的一个难点。一直没有特别好的办法解决。
Can Large Multimodel Models Uncover Deep Semantics Behind Images?
机器之心报道 编辑:张倩、蛋酱 具有 130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过 GPT-3( 参数量达1750 亿),而且可以在单块V100 GPU上运行。 千亿、万亿参数的超大模型需要有人研究,十亿、百亿参数的大模型同样需要。 刚刚,Meta 首席 AI 科学家 Yann LeCun 宣布,他们「开源」了一个新的大模型系列 ——LLaMA(Large Language Model Meta AI),参数量从 70 亿到 650 亿不等。这些模型的性能非常优异:具有 130 亿参数的 L
机器之心报道 编辑:张倩 帮大模型找 bug 还能赚钱,去试试? 「找到一项任务,越大的模型反而表现越差,你就有机会拿走 10 万美元的奖金。」这是纽约大学的几位研究人员组织的一项另类竞赛。 随着语言模型变得越来越大(参数数量、使用的计算量和数据集大小都变大),它们的表现似乎也原来越好,这被称为自然语言的 Scaling Law。 但是,这些模型也有自己的缺陷,比如存在偏见、可能产生看似合理实则错误的信息。这项竞赛的目的就是要找到一些大模型不擅长的例子。 组织者将这些现象称为 inverse scali
安全高效的使用数据库,在现在的IT环境里显得尤为重要,审计功能可以对数据库的操作进行评估,以满足安全生产和法律法规的要求。MySQL的企业版里,提供了一项审计功能——MySQL Enterprise Audit。MySQL的审计功能以插件来实现,支持在特定的MySQL服务器上执行标准审计、基于规则的监视、日志记录以及阻挡连接和查询活动。MySQL Enterprise Audit使用了公开的MySQL Audit API,如果你想使用这个API去自己开发一个审计插件,可以参考手册链接。
近年来深度学习的快速发展导致了计算机视觉各个方面的重要突破,尤其是在目标检测领域。这个计算机视觉的关键方面旨在识别和分类图像中的目标(例如,行人、动物、车辆),这对于目标追踪和目标分割等任务是一个基础性的要素。其在工业应用中非常广泛,范围从缺陷检测到自动驾驶。
紧接着,Mixtral 8x7B的技术细节随之公布,其表现不仅优于Llama 2 70B,而且推理速度提高了整整6倍。
爱可生 DBA 团队成员,负责公司 DMP 产品的运维和客户 MySQL 问题的处理。擅长数据库故障处理。对数据库技术和 python 有着浓厚的兴趣。
基准测试(benchmarking)是性能测试的一种类型,强调的是对一类测试对象的某些性能指标进行定量的、可复现、可对比的测试。
最近感觉,的确是不够用,手指头不够用,群里每天都有有意思的事情,正在准备下一步临时工访谈,一个更有意思刺激的故事,这就遇上群里高老师现场解决问题,高老师是MySQL业界的实战派,出现在群里呢,属于老神仙出山你算不出那天来,估计每天都是忙到想撞墙的地步。
MySQL 5.7版本于2015年10月份左右 GA,至今已经2年多了。和部分DBA朋友交流,很多公司已经开始在线上使用5.7版本。我们今年计划将公司数据库从5.6进行升级到5.7 版本。本系列基于版本5.7.20来讲述MySQL的新特性,同时也建议大家跟踪官方blog和文档,以尽快知悉其新的变化。
在MySQL的数据类型中,Tinyint的取值范围是:带符号的范围是-128到127。无符号的范围是0到255(见官方《MySQL 5.1参考手册》http://dev.mysql.com/doc/refman/5.1/zh/column-types.html#numeric-types)。
本文介绍了香港科技大学(广州)的一篇关于大模型高效微调(LLM PEFT Fine-tuning)的文章「Parameter-Efficient Fine-Tuning with Discrete Fourier Transform」,本文被 ICML 2024 接收,代码已开源。
函数表达式: ( 参数列表选择 ) 函数返回类型选择 => 函数体 函数体: 表达式 参数列表: 固定参数列表 固定参数列表 , 可选参数列表 可选参数列表 固定参数-列表: 参数 参数 , 固定参数列表 参数: 参数名称参数类型选择 参数名称: 标识符 参数类型: 断言 函数返回类型: 断言 断言: as nullable-primiitve-type 可选参数列表: 可选参数 可选参数 , 可选参数列表 可选参数: optional 参数 可空 nullable原始类型选择原始类型_
摘要:从人类反馈中强化学习(RLHF)已被证明是将预训练的大型语言模型(LLM)与人类偏好相匹配的有效方法。但是,使用 RLHF 训练模型的计算成本很高,而且整个过程也很复杂。在这项工作中,我们研究的 RLHF 是使用 Hu 等人[2021]提出的参数高效的低库自适应(Low-Rank Adaptation,LoRA)方法来训练底层模型的。我们研究了 "参数高效强化学习"(PERL)的设置,其中我们使用 LoRA 进行奖励模型训练和强化学习。我们比较了 PERL 和传统微调(完全微调)在 7 个基准(包括 2 个奖励建模和强化学习的新数据集)中的不同配置。我们发现,PERL 的性能与传统的 RLHF 设置相当,同时训练速度更快,占用内存更少。这使得 RLHF 的高性能得以实现,同时减少了限制其作为大型语言模型对齐技术的采用的计算负担。我们还发布了两个新颖的向上/向下偏好数据集:"Taskmaster Coffee "和 "Taskmaster Ticketing",以促进围绕 RLHF 的研究。
本文主要介绍 CVPR2024 录用文章LORS: Low-rank Residual Structure for Parameter-Efficient Network Stacking的主要工作。深度神经网络主要采用堆叠大量相似模块的设计范式。尽管这是一种有效的方式,但与此同时带来了参数量的显著增长,这给实际应用带来了挑战。本文算法LORS允许堆叠模块共享大多数参数,每个模块只需要少量参数就可以匹配甚至超过原始完全不同参数的方法,这显著减少了参数量。
整数类型 1. 类型介绍 整数类型一共有 5 种,包括 TINYINT、SMALLINT、MEDIUMINT、INT(INTEGER)和 BIGINT。 它们的区别如下表所示: 整数类型 字节 有符号数取值范围 无符号数取值范围 TINYINT 1 -128~127 0~255 SMALLINT 2 -32
文:Sabrina Göllner 翻译:陈之炎 校对:zrx 本文约4800字,建议阅读10分钟 本文来自 Niantic 和 UCL 等机构的研究者使用精心设计和训练的 2D 网络,实现了高质量的深度估计和 3D 重建。 标签:CNN训练 性能优良的神经网络不一定要很大。 图Uriel SC (Unsplash) 近年来,图像识别领域的研究主要集中在深度学习技术上,并且取得了很好的进展。卷积网络(CNNs)在感知图像结构方面非常有效,它能够自动提取独特的特征。然而,大型神经网络往往需要大量的算力和长时
这些问题是我在面试 AI 工程师岗位时常问到的问题。事实上,并非所有面试都需要用到所有这些问题,因为这取决于面试者的经验以及之前做过的项目。经过很多面试(尤其是与学生的面试)之后,我收集了 12 个深度学习领域的面试问题。我将在本文中将其分享给你。
领取专属 10元无门槛券
手把手带您无忧上云