背景: 为了提高数据库效率,建索引是家常便饭;那么当查询条件为2个及以上时,我们是创建多个单列索引还是创建一个联合索引好呢?他们之间的区别是什么?哪个效率高呢?我在这里详细测试分析下。
之前在网上看到过很多关于mysql联合索引最左前缀匹配的文章,自以为就了解了其原理,最近面试时和大牛交流中,发现遗漏了些东西,这里自己整理一下这方面的内容。
无论在工作还是面试中,关于SQL中不要用“SELECT *”,都是大家听烂了的问题,虽说听烂了,但普遍理解还是在很浅的层面,并没有多少人去追根究底,探究其原理。
面试官:“小陈,说一下你常用的 SQL 优化方式吧。” 陈小哈:“那很多啊,比如不要用 SELECT *,查询效率低。巴拉巴拉...”
规则1:一般情况可以选择MyISAM存储引擎,如果需要事务支持必须使用InnoDB存储引擎。 注意:MyISAM存储引擎 B-tree索引有一个很大的限制:参与一个索引的所有字段的长度之和不能超过10
无论在工作还是面试中,关于 SQL 中不要用“SELECT *”,都是大家听烂了的问题,虽说听烂了,但普遍理解还是在很浅的层面,并没有多少人去追根究底,探究其原理。
版权声明:本文为CSDN博主「_陈哈哈」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/qq_39390545/article/details/106766965
答案:一看就是对(a,b)建索引,当a = 1的时候,b相对有序,可以避免再次排序。
最左匹配原则就是指在联合索引中,如果你的 SQL 语句中用到了联合索引中的最左边的索引,那么这条 SQL 语句就可以利用这个联合索引去进行匹配。例如某表现有索引(a,b,c),现在你有如下语句:
执行 select * from T where k between 3 and 5,需要几次树的搜索,扫描多少行?
来源:blog.csdn.net/qq_39390545/article/details/106766965
前几天写的文章“MySQL 性能优化案例:覆盖索引”,介绍了使用覆盖索引优化查询的方式,受到了一个网友的批评 批评的内容为: “直接从索引放回数据很快是个常识,但是你这种单纯为了从索引返回而建索引我觉得不可取,毕竟建索引需要使用更大的空间和影响修改性能,索引是用来找数据而不是用来直接返回结果的” 当时我没有在意,因为我不认同他的说法,优化后性能的确提高了,而且我认为建立联合索引后对空间的影响、修改数据性能的影响肯定是可以接受的 后来意识到这是一个学习态度的问题,这位网友是用自己的感觉进行评论,批评得
联合索引可以测试包含索引中所有列的查询,或仅测试第一列、前两列、前三列等等的查询。如果在索引定义中以正确的顺序指定列,则复合索引可以加快对同一表的多种查询的速度。
陈小哈:“SELECT * 它好像比写指定列名多一次全表查询吧,还多查了一些无用的字段。”
按照ER图,建立数据库和表,并且进行测试数据的填充。(建表sql和填充脚本的文件可公众号(Vegout)回复关键字“联合索引”获取)
索引用于快速找出在某个列中有一特定值的行。不使用索引,MySQL必须从第1条记录开始然后读完整个表直到找出相关的行。表越大,花费的时间越多。如果表中查询的列有一个索引,MySQL能快速到达一个位置去搜寻到数据文件的中间,没有必要看所有数据。大多数MySQL索引(PRIMARY KEY、UNIQUE、INDEX和FULLTEXT)在B树中存储。只是空间列类型的索引使用R-树,并且MEMORY表还支持hash索引。
快速生产10万数据方法,执行main方法后,会将sql文件存入E盘,放到MySQL执行就行了
在一本厚厚的书籍的前几页,通常会有几页目录。作用是让读者可以快速找到感兴趣的章节进行阅读。 目录之所以可以快速阅读,是因为它提前进行了结构化+有序处理。
原文链接:http://www.toutiao.com/a6730869910135636494/
发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。
索引用于快速找出在某个列中有一特定值的行。不使用索引,MySQL必须从第1条记录开始然后读完整个表直到找出相关的行。 表越大,花费的时间越多。如果表中查询的列有一个索引,MySQL能快速到达一个位置去搜寻到数据文件的中间,没有必要看所有数据。 大多数MySQL索引(PRIMARY KEY、UNIQUE、INDEX和FULLTEXT)在B树中存储。只是空间列类型的索引使用R-树,并且MEMORY表还支持hash索引。
最近有一些朋友问我一些mysql相关的面试题,有一些比较基础,有些比较偏。这里就总结一些常见的mysql面试题吧,都是自己平时工作的总结以及经验。大家看完,能避开很多坑。而且很多问题,都是面试中也经常问到!希望能对大家的面试有一些帮助!!!
这个系统有一个会员表 有下列字段: 会员编号 INT 会员姓名 VARCHAR(10) 会员身份证号码 VARCHAR(18) 会员电话 VARCHAR(10) 会员住址 VARCHAR(50) 会员备注信息 TEXT
本文预计分为两个部分: (1)联合索引部分的基础知识 在这个部分,我们温习一下联合索引的基础 (2)联合索引部分的实战题 在这个部分,列举几个我认为算是实战中的代表题,挑出来说说。
MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度。
索引用于快速找出在某个列中有一特定值的行。不使用索引,MySQL必须从第1条记录开始然后读完整个表直到找出相关的行,还需要考虑每次读入数据页的IO开销。而如果采取索引,则可以根据索引指向的页以及记录在页中的位置,迅速地读取目标页进而获取目标记录。
1.索引列的数据长度能少则少。 说明:为了减少我们简历B+树时候关键字的重量,让结点可以存放更多数据
答:大部分程序主要的功能都是对数据的处理,写入、查询、转化、输出。最形象的比喻就是树和内容和目录的关系,目录就是索引,我们根据目录能快速拿到想要内容的页码。
大家好,又见面了,我是你们的朋友全栈君。 Mysql联合 索引(复合索引)的使用原则 命名规则:表名_字段名 需要加索引的字段,要在where条件中。 数据量少的字段不需要加索引。最窄的字段放在键的左边。 如果where条件中是OR关系,必须所有的or条件都必须是独立索引,否则加索引不起作用。见:mysql关于or的索引问题 最左匹配原则。 只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为NU
在真实项目中,SQL语句中的WHERE子句里通常会包含多个查询条件还会有排序、分组等。
数据库优化,主要包括数据表设计、索引、sql语句、表拆分、数据库服务器架构等方向的优化。
数据库相关 mysql索引的数据结构,加索引的原则 InnoDB和myiasm的区别,以及常见的mysql优化方案 sql查询优化 说说Mysql的sql优化 mysql的索引,b+树索引是否支持范围查询,联合索引的失效情况 开发中用了那些数据库?回答mysql,储存引擎有哪些?然后问了我悲观锁和乐观锁问题使用场景、分布式集群实现的原理。 数据库索引原理 mysql索引 B+树原理 mysql索引是怎么实现的?b+树有哪些特点?真实的数据存在哪里?哪些情况下建索引?解释下最左匹配原则?现在一个表有三列a
在InnoDB存储引擎中,是以主键为索引来组织数据的。记录在页中按照主键从小到大的顺序以单链表的形式连接在一起。
用python连接数据库 pymysql pip install pymysql #如果让你装vs环境, 执行以下命令升级pip即可 python -m pip install --upgrade pip 连接数据库 数据库设置 MYSQL_CONF = { "host": "127.0.0.1", "user": "root", "password": "qwe369", "db": "test" } 连接 # 连接数据库 mysql_con = pymysql.conn
一般用磁盘IO评价索引结构的优劣。B-树检索一次,最多访问h个节点,即其时间复杂度O(h)=O(log_d N),其实红黑色O(h)=O(log_2 N),接下来以实际数据做对比:数据量640亿。
索引是提高关系型数据库查询性能的利器,但其并非银弹,必须精通其原理,才能发挥奇效。
在关系数据库中,索引是一种数据结构,为存储引擎提高访问速度的数据结构,它一般是以包含索引键值和一个指向索引键值对应数据记录物理地址的指针的节点的集合的清单的形式存在。
前文已经说了explain命令的大部分参数,接着图解: EXPLAIN 实战-1这篇文章把explain的key_len参数分享完,接着分享最左前缀原则,建立如下的表,其中name列和address列都建立了索引
联合索引最左匹配原则概念 1.最左前缀匹配原则,非常重要的原则,我们在建立索引的时候,如果是联合索引.举个例子 比如 你一个表 第一个字段是id 第二个字段是 name 第三个字段是age,(id,name,age),三个字段都有索引,就是先按id排序,然后在第一个前提下 再对name排序,再对 age排序,都是在前一个索引排好序的前提下、如果你是一上来就是直接第三个索引范围查询就gg,如果你先第一个索引查 and 第二个索引范围查询,那就是可以的,必须要按顺序来,不能跳.
我们都知道mysql的索引使用B树来实现的,那么为什么会考虑B树,不考虑其他数据结构呢?
一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重。说起加速查询,就不得不提到索引了。
索引是帮助MySQL高效获取数据的数据结构。索引是在存储引擎中实现的,所以每种存储引擎中的索引都不一样。如MYISAM和InnoDB存储引擎只支持BTree索引;MEMORY储存引擎可以支持HASH和BTREE索引。
MySQL用来加快查询的技术很多,其中最重要的是索引。通常索引能够快速提高查询速度。如果不适用索引,MYSQL必须从第一条记录开始然后读完整个表直到找出相关的行。表越大,花费的时间越多。但也不全是这样。本文讨论索引是什么以及如何使用索引来改善性能,以及索引可能降低性能的情况。
领取专属 10元无门槛券
手把手带您无忧上云