3.全量导入(将数据从mysql导入到hive,hive表不存在,导入时自动创建hive表)
在做数据导出之前,我们看一下已经完成的操作:数据分析阶段将指标统计完成,也将统计完成的指标放到Hive数据表中,并且指标数据存储到HDFS分布式文件存储系统。
sqoop job --meta-connect jdbc:hsqldb:hsql://ip:port/sqoop --list
在数据处理和数据仓库建设中,常常会用到Hive进行数据存储和查询。然而,有时候我们需要将Hive中的表结构迁移到其他关系型数据库,比如MySQL。本文将介绍如何将Hive中的建表语句转换为MySQL中的建表语句,方便数据迁移和数据同步。
Sqoop(发音:skup)是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
sqoop,即SQL To Hadop,目的是完成关系型数据库导入导出到Hadoop
Hadoop正成为企业用于大数据分析的最热门选择,但想将你的数据移植过去并不容易。Apache Sqoop正在加紧帮助客户将重要数据从数据库移到Hadoop。随着Hadoop和关系型数据库之间的数据移动渐渐变成一个标准的流程,云管理员们能够利用Sqoop的并行批量数据加载能力来简化这一流程,降低编写自定义数据加载脚本的需求。
将 mysql 数据库中的 hive 数据库中的 ROLES 表数据导入到 HDFS 中的 /tmp/root/111 目录下。执行代码如下:
sqoop是apache旗下,用于关系型数据库和hadoop之间传输数据的工具,sqoop可以用在离线分析中,将保存在mysql的业务数据传输到hive数仓,数仓分析完得到结果,再通过sqoop传输到mysql,最后通过web+echart来进行图表展示,更加直观的展示数据指标。
Hive支持两种方式的数据导入 使用load语句导入数据 使用sqoop导入关系型数据库中的数据 使用load语句导入数据 导入本地的数据文件 load data local inpath '/home/centos/a.txt' into table tt; 注意:Hive默认分隔符是: tab键。所以需要在建表的时候,指定分隔符。 导入HDFS上的数据 load data inpath '/home/centos/a.txt' into table tt; 使用sqoop导入关系型数据库中的数据
大家好,我是一哥,昨天看到了过往记忆大佬发了一篇文章,才发现Sqoop这个项目最近不咋好,心里很不是滋味,这个帮助过很多开发者的项目,竟然从Apache顶级项目中“下架”了,今天还是想给大家分享介绍一些这个很棒的项目,致敬!
基于传统关系型数据库的稳定性,还是有很多企业将数据存储在关系型数据库中;早期由于工具的缺乏,Hadoop与传统数据库之间的数据传输非常困难。基于前两个方面的考虑,需要一个在传统关系型数据库和Hadoop之间进行数据传输的项目,Sqoop应运而生。
sqoop是apache旗下一款“Hadoop和关系数据库服务器之间传送数据”的工具。
https://www.cnblogs.com/xiaoliu66007/p/9633505.html
Sqoop可以在HDFS/Hive和关系型数据库之间进行数据的导入导出,其中主要使用了import和export这两个工具。这两个工具非常强大,提供了很多选项帮助我们完成数据的迁移和同步。比如,下面两个潜在的需求:
Apache Sqoop(TM)是一种旨在有效地在Apache Hadoop和诸如关系数据库等结构化数据存储之间传输大量数据的工具。
这些内容是从sqoop的官网整理出来的,是1.4.3版本的Document,如果有错误,希望大家指正。 1.使用sqoop导入数据 sqoop import --connect jdbc:mysql://localhost/db --username foo --table TEST 2.账号密码 sqoop import --connect jdbc:mysql://database.example.com/employees \ --username aaron
Sqoop 是一款开源的工具,主要用于在 Hadoop(Hive) 与传统的数据库 (mysql,postgresql,...) 间进行数据的高校传递,可以将一个关系型数据库(例如:MySQL,Oracle,Postgres等)中的数据导入到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。 Sqoop 项目开始于 2009 年,最早是作为 Hadoop 的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop 独立成为一个 Apache 顶级项目。 Sqoop2 的最新版本是 1.99.7。请注意,2 与 1 不兼容,且特征不完整,它并不打算用于生产部署。
一.安装SQOOP后可使用如下命令列出mysql数据库中的所有数据库,与检验是否安装成功。 # sqoop list-databases --connect jdbc:mysql://localhost:3306/ --username root --password 123456
这里给大家列出来了一部分Sqoop操作时的常用参数,以供参考,需要深入学习的可以参看对应类的源代码。
本需求将模拟从MySQL中向Hive数仓中导入数据,数据以时间分区。测试两种导入场景,一种是将数据全量导入,即包含所有时间分区;另一种是每天运行调度,仅导入当天时间分区中的用户数据。
Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
Sqoop是一个用来将Hadoop(Hive、HBase)和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如:MySQL ,Oracle ,Postgres等)中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导入到关系型数据库中。
在Sqoop中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用import关键字。
序:map客户端使用jdbc向数据库发送查询语句,将会拿到所有数据到map的客户端,安装jdbc的原理,数据全部缓存在内存中,但是内存没有出现爆掉情况,这是因为1.3以后,对jdbc进行了优化,改进jdbc内部原理,将数据写入磁盘存储了。
Sqoop是Apache开源项目,用于在Hadoop和关系型数据库之间高效传输大量数据,本文将与您一起实践以下内容:
注意: 查询语句必须包含where条件,即使不需要where条件,也需要写上"where $CONDITIONS"来表示没有select语句没有where条件
Sqoop 的lib中缺少Hive 的jar包,从Hive 中找的缺少的jar包到Sqoop中即可
在头条APP海量用户与海量文章之上,使用lambda大数据实时和离线计算整体架构,利用黑马头条用户在APP上的点击行为、浏览行为、收藏行为等建立用户与文章之间的画像关系,通过机器学习推荐算法进行智能推荐
离线数据分析平台实战——160Sqoop介绍 Sqoop介绍 Apache Sqoop(SQL-to-Hadoop) 是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、oracle...)间进行数据的传递,可以将一个关系型数据库中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。 一般情况下,是将数据分析的结果导出到关系型数据库中,供其他部门使用。 Sqoop成立于2009年,刚开始是作为hadoop的一个模块而存在的,不过后来为了更好的进行
sqoop简介 1,sqoop:sql-to-hadoop, sqoop是连接关系型数据库和hadoop的桥梁: (1),把关系型数据库的数据导入到hadoop与其相关的系统(hbase和hive); (2),把数据从hadoop导出到关系型数据库里。 sqoop是利用mapreudude加快数据的传输速度,批处理的方式进行数据传输。 2,sqoop1&sqoop2 两个版本完全不兼容。版本的划分方式是apache:1.4.x,1.99.x。 sqoop2相对于sqoop1有很大改进:首先引入了
import工具从RDBMS向HDFS导入单独的表。表格中的每一行都表示为HDFS中的单独记录。记录可以存储为文本文件(每行一个记录),或以Avro或SequenceFiles的二进制表示形式存储。
hive启动后运行命令时出现: FAILED: Error in metadata: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.metastore.HiveMetaStoreClient FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask 这种情况一般原因比较多,所以需要进行hive调试: 进
3.使用Sqoop从MySQL导入数据到HDFS,要导入的目录是Hive中新建表的数据目录
在网易集团内部有大大小小几百套 hive 集群,为了满足网易猛犸大数据平台的元数据统一管理的需求,我们需要将多个分别独立的 hive 集群的元数据信息进行合并,但是不需要移动 HDFS 中的数据文件,比如可以将 hive2、hive3、hive4 的元数据全部合并到 hive1 的元数据 Mysql 中,然后就可以在 hive1 中处理 hive2、hive3、hive4 中的数据。
Sqoop并不在这篇文章的范围内,拿出来说的原因是,公司数据研发部门是通过Sqoop将数据库数据导入到Hive中,其原理是将数据库数据导入到HDFS中临时存储, 然后在将文件导入到Hive中,最终删掉临时存储的文件。
今天开始讲解Sqoo的用法搭建和使用。Sqoop其实功能非常简单。主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
Hive可以管理HDFS中的数据,可以通过SQL语句可以实现与MapReduce类似的同能,因为Hive底层的实现就是通过调度MapReduce来实现的,只是进行了包装,对用户不可见。 Hive对HDFS的支持只是在HDFS中创建了几层目录,正真的数据存在在MySql中,MYSQL中保存了Hive的表定义,用户不必关系MySQL中的定义,该层对用户不可见。Hive中的库在HDFS中对应一层目录,表在HDFS中亦对应一层目录,如果在对应的表目录下放置与表定义相匹配的数据,即可通过Hive实现对数据的可视化及查询等功能 综上所述,Hive实现了对HDFS的管理,通过MySQL实现了对HDFS数据的维度管理 Hive基本功能及概念 database table 外部表,内部表,分区表 Hive安装 1. MySql的安装(密码修改,远程用户登陆权限修改) 2. Hive安装获取,修改配置文件(HADOOP_HOME的修改,MySQL的修改) 3. 启动HDFS和YARN(MapReduce),启动Hive Hive基本语法: 1. 创建库:create database dbname 2. 创建表:create table tbname Hive操作: 1. Hive 命令行交互式 2. 运行HiveServer2服务,客户端 beeline 访问交互式运行 3. Beeline 脚本化运行 3.1 直接在 命令行模式下 输入脚本命令执行(比较繁琐,容易出错,不好归档) 3.2 单独保存SQL 命令到 文件,如etl.sql ,然后通过Beeline命令执行脚本 数据导入: 1. 本地数据导入到 Hive表 load data local inpath "" into table .. 2. HDFS导入数据到 Hive表 load data inpath "" into table .. 3. 直接在Hive表目录创建数据 Hive表类型: 1. 内部表: create table 表数据在表目录下,对表的删除会导致表目录下的数据丢失,需要定义表数据的分隔符。 2. 外部表: create external table 表目录下挂载表数据,表数据存储在其他HDFS目录上,需要定义表数据的分隔符。 3. 分区表:与创建内部表相同,需要定义分区字段及表数据的分隔符。在导入数据时需要分区字段,然后会在表目录下会按照分区字段自动生成分区表,同样也是按照目录来管理,每个分区都是单独目录,目录下挂载数据文件。 4. CTAS建表 HQL 1. 单行操作:array,contain等 2. 聚合操作:(max,count,sum)等 3. 内连接,外连接(左外,右外,全外) 4. 分组聚合 groupby 5. 查询 : 基本查询,条件查询,关联查询 6. 子查询: 当前数据源来源于 另个数据执行的结果,即当前 table 为临时数据结果 7. 内置函数: 转换, 字符串, 函数 转换:字符与整形,字符与时间, 字符串:切割,合并, 函数:contain,max/min,sum, 8. 复合类型 map(key,value)指定字符分隔符与KV分隔符 array(value)指定字符分隔符 struct(name,value) 指定字符分割与nv分隔符 9. 窗口分析函数 10. Hive对Json的支持
前面介绍了sqoop1.4.6的 如何将mysql数据导入Hadoop之Sqoop安装,下面就介绍两者间的数据互通的简单使用命令。 显示mysql数据库的信息,一般sqoop安装测试用 sqoop list-databases --connect jdbc:mysql://192.168.2.101:3306/ --username root --password root 显示数据库里所有表: sqoop list-tables --connectjdbc:mysql://192.168.2.101:
注意: 在sqoop-1.4.6以前,从MySQL中导出数据到hive表中,不能指定文件格式为parquet,只能先导入到HDFS,在从HDFS上load parquet file
Sqoop的输入输出/导入导出是相对于文件系统HDFS的, 因此HDFS的导入导出如图1,图2
这次大作业的主要流程是: 首先要采集数据,采用脚本定时采集的那种,采集的数据来源这篇博文:https://www.dzyong.com/#/ViewArticle/123,里面有几个数据接口,返回的数据是json格式,用java程序,先转化为用tab键分割的文本数据,然后导入hive中; 其次是在hive中对导进来的数据进行处理过滤,再建几个表,把处理结果存到新建的表里,然后把hive处理结果的数据表导入mysql中;这样做完一次后,开始写脚本,每隔一天采集一次数据,hive处理数据一次,mysql统计数据一次; 接着就是编程,用ssm框架连接到mysql,对数据用javaBean进行封装,用mvc模式将部分数据显示到前台页面; 最后用echarts对封装的数据进行数据可视化,可以做成条形图,折线图,饼图,气泡图,地图等可视化图标。
A:可以把hadoop数据导入到关系数据库里面(e.g. Hive -> Mysql)
“导入工具”导入单个表从RDBMS到HDFS。表中的每一行被视为HDFS的记录。所有记录都存储为文本文件的文本数据(或者Avro、sequence文件等二进制数据)
Apache Sqoop是在Hadoop生态体系和*RDBMS体系之间传送数据的一种工具。来自于Apache软件基金会提供。,主要用于在Hadoop(Hive)与传统的数据库间进行数据的传递,可以将一个关系型数据库中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
--last-value <largest_column_num> 检查的列中的上一个导入的值
1. Hadoop、Hive、MySQL安装(略) 2. 下载sqoop http://www.apache.org/dyn/closer.lua/sqoop/1.4.6 3. 解压 tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 4. 建立软连接 ln -s sqoop-1.4.6.bin__hadoop-2.0.4-alpha sqoop 5. 加执行文件路径 export PATH=$PATH:/
领取专属 10元无门槛券
手把手带您无忧上云