首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Mysql海量数据处理

一说海量数据有人就说了直接用大数据,那只能说不太了解这块,为此我们才要好好的去讲解一下海量的处理 海量数据的处理分为两种情况 1)表中有海量数据,但是每天不是很快的增长 2)表中有还流量数据,而且每天很快速的增长...海量数据的解决方案 1)使用缓存 2)页面静态化技术 3)数据库优化 4)分离数据库中活跃的数据 5)批量读取和延迟修改 6)读写分离 7)使用NoSql和Hadoop等技术 8)分布式部署数据库...9)应用服务和数据库分离 10)使用搜索引擎搜索数据库中的数据 11)进行业务的拆分 千万级数数据mysql实际上确实不是什么压力,InnoDB的存贮引擎,使用B+数存储结构,千万级的数据量...,写操作效率提高了 * 查询一次的时间短了 * 读写缩影的数据变小 * 插入数据需要重新建立索引的数据减少 分库 将一个应用中对应的一个数据库分解成多个数据库,且可以这多个数据库可以存在同一个服务器上...这个函数可以包含MySQL 中有效的、产生非负整数值的任何表达式。 * KEY分区:类似于按HASH分区,区别在于KEY分区只支持计算一列或多列,且MySQL 服务器提供其自身的哈希函数。

1.2K20

海量数据查询方案mysql_Mysql海量数据存储和解决方案之二—-Mysql分表查询海量数据

关键词:分库分表,路由机制,跨区查询,MySQL 数据变更,分表数据查询管理器与线程技术的结合,Cache 前面已经讲过Mysql实现海量海量数据存储查询时,主要有几个关键点,分表,分库,集群,M-S,...分库是如何将海量Mysql数据放到不同的服务器中,分表则是在分库基础上对数据现进行逻辑上的划分。...常用解决方案如下: MySQL master/slave:只适合大量读的情形,未必适合海量数据MySQL cluster:提供的可能不是大家想要那种功能。...MySQL对于海量数据按应用逻辑分表分数据库,通过程序来决定数据存放的表。但是 跨区查询是一个问题,当需要快速查找一个数据时你得准确知道那个数据存在哪个地方。...海量数据查询时,还有很重要的一点,就是Cache的应用。不过是不是Cache在任何时候都是万能贴呢?不一定。Cache也命中率,维护等问题。

1.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用 Logstash 同步海量 MySQL 数据到 ES

    概述   在生产业务常有将 MySQL 数据同步到 ES 的需求,如果需要很高的定制化,往往需要开发同步程序用于处理数据。但没有特殊业务需求,官方提供的Logstash 就很有优势了。   ...2、配置 2.1、新建目录存放配置文件及mysql依赖包   在【程序目录】目录(\bin同级)新建mysql目录,将下载好的mysql-connector-java-5.1.34.jar放入此目录;...  在【程序目录】\mysql目录新建jdbc.conf文件,此文件将配置数据库连接信息、查询数据sql、分页信息、同步频率等核心信息。   ...name of the driver class for mysql jdbc_driver_class => "com.mysql.jdbc.Driver" # 数据库重连尝试次数 connection_retry_attempts...4.7、海量数据同步   为什么会慢?logstash分页查询使用临时表分页,每条分页SQL都是将全集查询出来当作临时表,再在临时表上分页查询。这样导致每次分页查询都要对主表进行一次全表扫描。

    10K32

    mysql 优化海量数据插入和查询性能

    因此,优化数据库插入性能是很有意义的。 修改mysql数据库配置: 0. 最快的当然是直接 copy 数据库表的数据文件(版本和平台最好要相同或相似); 1....这里第二种SQL执行效率高的主要原因是合并后日志量(MySQL的binlog和innodb的事务让日志) 减少了,降低日志刷盘的数据量和频率,从而提高效率。...COMMIT; 使用事务可以提高数据的插入效率,这是因为进行一个INSERT操作时,MySQL内部会建立一个事务,在事务内才进行真正插入处理操作。...MySQL有innodb_log_buffer_size配置项,超过这个值会把innodb的数据刷到磁盘中,这时,效率会有所下降。所以比较好的做法是,在数据达到这个这个值前进行事务提交。...mysql数据库查询优化方法 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

    4K20

    海量数据, 为何总是 海量垃圾 ?!

    2017.9.10, 深圳, Ken Fang 雷军说:我拥有海量数据, 却不知道怎么用?每年, 花在存储海量数据的费用, 也是海量;足以使企业破产⋯ 为何会如此?...当我们将所谓 “海量数据分析” 的神秘面纱给揭开时, 打破 “海量数据分析” 的神话, 就会很容易的明白, 真正的问题到底出在哪?为何谷歌能做到的, 我们却做不到?...大家都明白的 Common Sense: 做海量数据分析, 要先能建立数据模型;有了数据模型, 我们才能从 “海量数据中, 去提炼出 “有用” 的数据。...海量数据分析最关键、最重要的ㄧ步:将海量数据 “转换” 为有用的数据。 而数据模型建立的前提是: @ 要能先分析出, 产生数据背后的 “用户的目的” 。例如:用户是基于什么样的社会事件?天灾?...这样的数据, 再如何的 “海量”, 也根本没法经由 “数据分析师”, 使用任何的数据分析工具, 建立出任何有效的数据模型;海量数据将永远没办法转换为有用的数据。 为什么谷歌能做得到?

    95850

    MySQL具体解释(19)———-海量数据分页查询优化

    MySql 这个数据库绝对是适合dba级的高手去玩的,一般做一点1万篇新闻的小型系统怎么写都能够。用xx框架能够实现高速开发。 但是数据量到了10万,百万至千万,他的性能还能那么高吗?...我猜想是由于collect 数据太多。所以分页要跑非常长的路。limit 全然和数据表的大小有关的。事实上这样做还是全表扫描,仅仅是由于数据量小,仅仅有10万才快。...由于一条记录的长度是固定的,mysql 应该能够算出90万的位置才对啊?但是我们高估了mysql 的智能。他不是商务数据库,事实证明定长和非定长对limit影响不大?...我相信这是真的,这个和数据库设计有关! 难道MySQL 无法突破100万的限制吗???到了100万的分页就真的到了极限? 答案是: NO 为什么突破不了100万是由于不会设计mysql造成的。...对于ERP,OA,大型站点,数据层包含逻辑层的东西都不能用框架。假设程序猿失去了对sql语句的把控,那项目的风险将会成几何级数添加! 尤其是用mysql 的时候。

    1.2K30

    MySQL 海量数据优化(理论+实战) 吊打面试官

    ,以后面试官问你如何 快速获取海量数据并加载到缓存 你该知道怎么回答了吧。...)、(user_name,address)、(user_name,address,create_time)三个索引,我们都知道每多一个索引,都会增加写操作的开销和磁盘空间的开销,对于海量数据的表,这可是不小的开销...MySQL的查询缓存系统会跟踪查询中涉及的每个表,如果这些表(数据或结构)发生变化,那么和这张表相关的所有缓存数据都将失效。正因为如此,在任何的写操作时,MySQL必须将对应表的所有缓存都设置为失效。...预处理则会根据MySQL规则进一步检查解析树是否合法。比如检查要查询的数据表和数据列是否存在等等。...#TRADITIONAL模式:严格模式,当向mysql数据库插入数据时,进行数据的严格校验,保证错误数据不能插入,报error错误。用于事物时,会进行事物的回滚。

    43120

    什么是海量数据 海量数据与大数据的关系

    在人们还没有搞明白大数据的情况下,又出现了一个海量数据海量数据与大数据的关系是什么,他们有什么关联吗?还是大数据的升级版才是海量数据,今天来聊一下海量数据与大数据的关系吧!...image.png 1、什么是海量数据,什么是大数据 所谓的海量数据从字面上理解就是数据多到已经用大海来形容了,现实中也确实如此。...2、海量数据与大数据的关系 海量数据与大数据的关系其实是相互的,海量数据可以包含在大数据里面,同样大数据也可以包含在海量数据里面。...海量数据需要找合适的数据来进行计算时,大数据也可以将海量数据分解并帮助其计算完成。所以海量数据与大数据的关系是相互的,在对方有困难的时候都会伸出手来帮助,海量数据与大数据的关系一定是不错的。...海量数据与大数据通俗的说就是,海量数据有时候不能一个人完成的事情会找帮手一起完成,而大数据则是喜欢把一个大任务分解成多个小任务再逐一完成。

    4K30

    MySQL 海量数据的 5 种分页方法和优化技巧

    昨天,群里有一个网友问我关于 MySQL数据量分页的问题。有人回答说用缓存 Redis,这个就比较麻烦了。而且别人问的是 MySQL 分页,而不是架构如何设计!...那么我今天就来分享一下,5 种常见的 MySQL Limit 分页方法和优化技巧。 第一种方法,直接使用数据库提供的 SQL 语句 limit 来分页。 ? 适用于数据量较少的情况。...适用于数据量较多的情况。这样方法,会使用索引扫描,速度会很快。如果你的数据查询出来并不是按照 pk_id 排序的,那么就有可能漏掉数据的情况。所以使用的时候要注意。不行的话,你就用方法三。...这个 SQL 很厉害,适合海量数据的场景。这个查询会使用索引扫描,速度会很快。prepare 语句又比一般的查询语句快一点。...方案五,利用 MySQL 支持 ORDER 操作可以利用索引快速定位部分元组,避免全表扫描。 例如:读第 101000 到 101019 行元组( pk 是主键/唯一键)。 ?

    1.4K50

    BitSet处理海量数据

    关于BitSet BitSet是java.util下包下,JDK1.0中就已经引入这个数据结构。 如果你对数据结构的"位图"比较熟悉,那么BitSet就很好理解了。...位图定义了数据的存在性可以用bit位上的1和0来表示,一个bit有两个值,0或1。而BitSet正是因为采用这种数据结构,在判断“数据是否存在”的场景会经常出现。...因为BitSet内部定义来long数组,而long在内存中占用8个字节,即64bit,BitSet中每一个bit都可以保存一个int数据(准确的说是用0和1来说明int数据是否存在),那么也就是我们用了...使用BitSet 写这篇文章,也是因为遇到了相关的问题: 我需要获取某一天没有登陆的用户列表 最初我的解决方案:用户活跃数据是存在hive中,通过调用接口返回到List中。...然后遍历全部用户,通过list.contains()来进行判断(这可能就是一直没有接触过海量数据造成的),那么效果就不用说了,挺低的。

    1.5K40

    海量数据处理

    海量数据处理是基于海量数据上的存储、处理、操作。 所谓海量,就是数据量很大,可能是TB级别甚至是PB级别,导致无法一次性载入内存或者无法在较短时间内处理完成。...但是 面向结构化数据存储的关系型数据库已经不能满足当今互联网数据快速访问、大规模数据分析挖掘的需求。 它主要缺点: 1) 对于半结构化、非结构化的海量数据存储效果不理想。...像电子邮件、 超文本、标签(Tag)以及图片、音视频等各种非结构化的海量数据。 2)关系模型束缚对海量数据的快速访问能力: 关系模型是一种按内容访问的模型。...3)在海量规模下, 传统数据库一个致命弱点, 就是其可扩展性差。...主要特性:   ● 分布式   ● 基于column的结构化   ● 高伸展性 2 海量数据处理 海量数据处理就是如何快速地从这些海量数据中抽取出关键的信息,然后提供给用户

    1.4K10

    海量数据处理

    海量数据,不能一次加载到内存中 海量数据topK(最大和最小k个数),第k大,第k小的数 海量数据判断一个整数是否存在其中 海量数据找出不重复的数字 找出A,B两个海量url文件中共同的url 10亿搜索关键词中热度最高的...k个 海量数据topK 最大K使用最小堆,最小K使用最大堆,这里以最大K为例 海量数据hash分块 维护最小堆的K个数据数据容器 堆中数据是topK大的数据,堆顶的数据是第K大数据 先将海量数据hash...* K个数据,然后对这些数据再进行排序,或者再次通过维护最小堆 变形 第K大不只是topK,此时堆顶数据即是 只求最大或最小 海量数据不仅仅是整数,也可以是字符串 海量数据按照出现的次数或者频率排序,...topK 海量数据按照出现的次数或者频率排序,topK 先将海量数据hash再取模m,分成m个小文件,hash(num)%m 扫描每个小文件的数据,通过hash_map建立值和频率的键值对 以出现的频率维护最小堆的...K个数据数据容器 遍历每个小文件中剩余的数据,与堆顶的数据进行比较,更新最小堆中的数据 生成m * K个数据,然后对这些数据再进行排序,或者再次通过维护最小堆 找出A,B两个海量url文件中共同的url

    1.4K41

    海量数据TopK问题

    # 海量数据TopK问题 在大规模数据处理中,经常会遇到这类问题:在海量数据中找到出现频率/数值最大的前K个数 本文主要提供这类问题的基本解决方法 假设这样一个场景,一个问题阅读量越高,说明这个问题越有价值...,越应该推送给用户 假设数据量有1亿,取Top100 最容易想到的方法是将全部数据进行排序,但如果数据量太大 ,这显然是不能接受的。...第三种方法是分治法,将1亿个数据分成100份,每份100万个数据,找到每份数据中最大的100个(即每份数据的TopK),最后在剩下的100*100个数据里面找出最大的100个。...如果100万数据选择足够理想,那么可以过滤掉1亿数据里面99%的数据。...100万个数据里面查找最大的100个数据的方法如下:用快速排序的方法,将数据分为2堆,如果大的那堆个数N大于100个,继续对大堆快速排序一次分成2堆,如果大的那堆个数N大于100个,继续对大堆快速排序一次分成

    1.3K30

    海量数据处理

    针对海量数据的处理,可以使用的方法非常多,常见的方法有hash法、Bit-map法、Bloom filter法、数据库优化法、倒排索引法、外排序法、Trie树、堆、双层桶法以及MapReduce法...hash数据结构中的数据对外是杂乱无章的,因此其具体的存储位置以及各个存储元素位置之间的相互关系是无法得知的,但是却可以在常数时间里判断元素位置及存在与否。...上面的数据排序后的结果为1101001011。   ...位图法排序的时间复杂度是O(n),比一般的排序快,但它是以时间换空间(需要一个N位的串)的,而且有一些限制,即数据状态不是很多,例如排序前集合大小最好已知,而且集合中元素的最大重复次数必须已知,最好数据比较集中...4.数据库优化法 这种方法不细致说,因为不是直接的算法,而是通过优化数据库(优化数据库其实也是用的算法)的方式。

    2.1K140

    MySQL 深度分页技巧,拯救海量数据查询慢的困局

    从一个问题说起 六年前刚工作的时候,发现分页场景下,当offset变大,MySQL处理速度非常慢!...字段名 类型 描述 id bigint(20) unsigned 主键id age int 年龄 其中t_record是要查询的数据表,表中一共有50000条记录,age字段上有索引,且age>10的记录有...在数据量这么少的情况下,走索引还这么慢,这完全不能接受,我就问我导师为什么,他反问“索引场景,MySQL中获得第n大的数,时间复杂度是多少?”...答案的追寻 小白直觉作答 针对我们的问题,这里介绍两个相关的概念: 聚簇索引:包含主键索引和对应的实际数据,索引的叶子节点就是数据节点; 辅助索引:也叫二级节点,其叶子节点还是索引节点,并没有完整的数据...,仅包含了索引值本身和主键id,用主键id反查聚蔟索引才能获取完整数据

    1.3K10

    mongodb海量数据CRUD优化

    按照正常的做法,需要跳过99*100条数据,非常大的代价。...换一个角度思考,因为数据是有序的,因此第100页的数据的最后修改时间是小于第99页最小的修改时间,查询时加上这个条件,就可以直接取符合条件的前100条即可。 3....另外,FindAll一次性加载数据到内存,整个速度也会比较慢,需要等待所有数据进入内存后才能开始处理。 另外一个误区是,分页查询,依次处理。分页查询可以有效减少服务器负担,不失为一种可行的方法。...但是就和上面分页说的那样,分页到后面的时候,需要skip掉前面的数据,存在无用功。...dataList, thingId2Resource); } 更推荐的做法是,采用mongoTemplate的steam方法,返回CloseableIterator迭代器,读一条数据处理一条数据

    1.7K30

    海量数据处理:算法

    海量信息即大规模数据,随着互联网技术的发展,互联网上的信息越来越多,如何从海量信息中提取有用信息成为当前互联网技术发展必须面对的问题。...在海量数据中提取信息,不同于常规量级数据中提取信息,在海量信息中提取有用数据,会存在以下几个方面的问题: (1)数据量过大,数据中什么情况都可能存在,如果信息数量只有20条,人工可以逐条进行查找、比对...数据库优化法 互联网上的数据一般都被存储在数据库中,很多情况下,人们并非对这些海量数据本身感兴趣,而是需要从这些海量数据中提取出对自己有用的信息。...现在的数据库一般使用Oracle、DB2、MySQL等。...(2)数据分区 进行海量数据的查询优化,一种重要方式就是如何有效地存储并降低需要处理的数据规模,所以可以对海量数据进行分区操作提高效率。

    90420
    领券