消息中间件的作用就是用来异步化并发能力的一个载体,不仅如此,它仍然需要在架构上保证很多能力,高可用,高并发,可扩展,可靠性,完整性,保证顺序等,光是这些都已经让各种设计者比较头疼了; 更有一些变态的需求,例如慢消费,不可重复等需要花的设计代价是相当高的,所以不要盲目的迷信开源大牛,对于很多机制,几乎都要重建;建立一个符合所有业务,好用,通用的私有云,没那么简单。
Metamorphosis (MetaQ) 是一个高性能、高可用、可扩展的分布式消息中间件,类似于LinkedIn的Kafka,具有消息存储顺序写、吞吐量大和支持本地和XA事务等特性,适用 于大吞吐量、顺序消息、广播和日志数据传输等场景,在淘宝和支付宝有着广泛的应用,现已开源。
支付宝是属于第三方支付平台,是蚂蚁集团 旗下的支付平台系统,支付宝也是中国支付行业的一个标兵,无论是业务能力还是产品创都引领者中国支付行业的前沿,作为支付业务的基础系统的复杂性和稳定性是支付业务是否能够及时快速安全处理的根本。
本文整理了阿里13个开源中件间产品的架构及功能介绍,结合阿里中间件团队的访谈及分享,涵盖了消息中间件、服务框架、数据层、应用服务器和大规模分布式稳定性平台等等。整体中间件在阿里生态中的分布,如下图所示:
基于公司内部开源共建原则, RocketMQ 项目只维护核心功能,且去除了所有其他运行时依赖,核心功能最 简化。每个 BU 的个性化需求都在 RocketMQ 项目之上进行深度定制。RocketMQ 向其他 BU 提供的仅仅是Jar 包,例如要定制一个 Broker,那么只需要依赖 rocketmq-broker 这个 jar 包即可,可通过 API 进行交互,如果定制 client,则依赖 rocketmq-client 这个 jar 包,对其提供的 api 进行再封装。
1.Provider提供方:服务提供者。2.Producer生产者:创建和发送JMS消息的客户端。3.Consumer消费者:接收JMS消息的客户端。4.Client客户端:生产或消费消息的应用&进程。5.Message消息:服务端与客户端之间的传输数据对象。6.Queue队列 :包含待读取消息的准备区域(点对点)。7.Topic主题:发布消息的分布机制(发布&订阅)。
分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦。现在开源的消息中间件有很多,前段时间我们自家的产品 RocketMQ (MetaQ的内核) 也顺利开源,得到大家的关注。
消息队列(Message Queue,简称 MQ)。是基于队列与消息传递技术,在网络环境中为应用系统提供同步或异步、可靠的消息传输的支撑性软件系统。
MQ是把消息和队列结合起来,称为消息队列(MessageQueue),是基础数据结构中“先进先出”的一种数据结构。指把要
一、消息中间件相关知识 1、概述 消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发RocketMQ等。 2、消息中间件的组成 2.1 Broker 消息服务器,作为server提供消息核心服务 2.2 Producer 消息生产者,业务的发起方,负责生产消息传输给broker, 2.3 Consumer 消息消费者,业务的处理方,负责从broker获取消息并进行业务逻辑处理 2.4 Topic 主题,发布订阅模式下的消息统一汇集地,不同生产者向topic发送消息,由MQ服务器分发到不同的订阅者,实现消息的 广播 2.5 Queue 队列,PTP模式下,特定生产者向特定queue发送消息,消费者订阅特定的queue完成指定消息的接收 2.6 Message 消息体,根据不同通信协议定义的固定格式进行编码的数据包,来封装业务数据,实现消息的传输 3 消息中间件模式分类 3.1 点对点 PTP点对点:使用queue作为通信载体
说到消息中间件,估计大伙多多少少都能讲出来一些,ActiveMQ、RabbitMQ、RocketMQ、Kafka 等等各种以及 JMS、AMQP 等各种协议,然而这些消息中间件各自都有什么特点,我们在开发中又该选择哪种呢?今天松哥就来和小伙伴们梳理一下。
离线计算Hadoop 实时计算Storm 资源管理和调度Mesos thrift RPC 类库boost 内存分配tmalloc 性能瓶颈检测perftools 内存检测工具valgrind 分布式协调服务zookeeper 日志glog 命令行参数gflag 嵌入式数据库SQLite3 嵌入式键值对数据库levelDB 分布式缓存memcached 消息中间件RabbitMQ、ActiveMQ、metaq(淘宝出品) 任务分发框架Gearman
我们以一个转帐的场景为例来说明这个问题,Bob向Smith转账100块。这个列子在瓜子也有很多实际场景映射,如:车源状态变化,订单状态变化,金融放款,物流运输……
消息队列(Message Queue,简称MQ)。消息中间件作为实现分布式消息系统可拓展、可伸缩性的关键组件,具有高吞吐量、高可用等等优点。
RocketMQ作为一款分布式的消息中间件(阿里的说法是不遵循任何规范的,所以不能完全用JMS的那一套东西来看它),经历了Metaq1.x、Metaq2.x的发展和淘宝双十一的洗礼,在功能和性能上远超ActiveMQ。
在分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦。现在开源的消息中间件有很多,前段时间产品 RocketMQ (MetaQ的内核) 也顺利开源,得到大家的关注。
我们平时的程序多数都是同步的,常见的RestApi,都是同步的调用。在处理异步的请求时,适合采用消息中间件。特别是涉及到一些跨系统的调用,而且在处理一些高并发问题的时候,也可以采用mq队列的串行特征,使得开发简单。此外,mq的订阅模式,适用于在消费生产者发出信息时不知道有多少消费者时,这种模式完美适用。
消息队列,缓存,分库分表是高并发解决方案三剑客,而消息队列是我最喜欢,也是思考最多的技术。
注意:在上面提到的应用场景中,有个默认前提是:数据量很小,但是数据更新可能会比较快的场景。
消息中间件是在消息的传输过程中保存消息的容器。消息中间件在将消息从消息生产者到消费者时充当中间人的作用。队列的主要目的是提供路由并保证消息的传送;如果发送消息时接收者不可用,消息对列会保留消息,直到可以成功地传递它为止,当然,消息队列保存消息也是有期限的。
阿里巴巴有2大核心的分布式技术,一个是OceanBase,另一个就是RocketMQ。在实际项目中已经领教过RocketMQ的强大,本人计划写一个RocketMQ实战系列,将涵盖RocketMQ的简介,环境搭建,初步使用、API详解、架构分析、管理员集群操作等知识。
RocketMQ 是一款开源的分布式消息系统,基于高可用分布式集群技术,提供低延时的、高可靠的消息发布与订阅服务。同时,广泛应用于多个领域,包括异步通信解耦、企业解决方案、金融支付、电信、电子商务、快递物流、广告营销、社交、即时通信、移动应用、手游、视频、物联网、车联网等。
明代著名的心学集大成者王阳明先生在《传习录》中有云:“道无精粗,人之所见有精粗。如这一间房,人初进来,只见一个大规模如此。处久,便柱壁之类,一一看得明白。再久,如柱上有些文藻,细细都看出来。然只是一间房。”
在今天双 11 这个万众狂欢的节日,对于阿里员工来说,每个环节都将面临前所未有的考验,特别是技术环节,今天我们就一起来探讨下双11天量交易额背后的技术。
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。 值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利用其提供的一系列API接口(或者称为原语集),摸索出来的典型使用方法。因此,也非常欢迎读者分享你在ZK使用上的奇技淫巧。
消息队列在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在消息队列的使用和原理方面对小伙伴们进行360°的刁难。
在斯坦福大学, 乔布斯做了一场我认为他最精彩的演讲之一 (另一场可能是iphone的问世发布会)。他讲了第一个故事 "connecting the dots"
在2007年的时候,淘宝实施了“五彩石”项目,“五彩石”用于将交易系统从单机变成分布式,也是在这个过程中产生了阿里巴巴第一代消息引擎——Notify。在2010年的时候,阿里巴巴B2B部门基于ActiveMQ的5.1版本也开发了自己的一款消息引擎,称为Napoli,这款消息引擎在B2B里面广泛地被使用,不仅仅是在交易领域,在很多的后台异步解耦等方面也得到了广泛的应用。在2011年的时候,业界出现了现在被很多大数据领域所推崇的Kafka消息引擎,阿里在研究了Kafka的整体机制和架构设计之后,基于Kafka的设计使用Java进行了完全重写并推出了MetaQ 1.0版本,主要是用于解决顺序消息和海量堆积的问题。而在2012年,阿里对于MetaQ进行了架构重组升级,开发出了MetaQ 2.0,这时就发现MetaQ原本基于Kafka的架构在阿里巴巴如此庞大的体系下很难进行水平扩展,所以在2012年的时候就开发了RocketMQ 3.0版本。很多人会问到RocketMQ 3.0和MetaQ 3.0的区别,其实这两者是等价的版本,只不过阿里内部使用的称为MetaQ 3.0,外部开源称之为RocketMQ 3.0。在2015年,又基于RocketMQ开发了阿里云上的Aliware MQ和Notify 3.0。在2016年的时候,阿里巴巴将RocketMQ的内核引擎捐赠给了Apache基金会。
今天带各位老铁对kafka入个门,kafka的集群搭建下,也不知道多少老铁使用过kafka。其实用过的老铁应该没多少。我相信大多老铁用过activeMq,rabbitMq或者rocketMq,这些都是java开发的比较传统的,而且用起来非常简单,结构没那么复杂。很多人都是写业务代码没接触过大数据量高并发的。之前说过rocketMq的历史,它的前身就是metaQ,metaQ来自哪里知道不老铁,其实就是借鉴了kafka,基本上metaQ的第一版就是超的kafka。2010年底kafka开源后,阿里立刻行动通过j
消息(Message)是指在应用间传送的数据。消息可以非常简单,比如只包含文本字符串、 JSON等,也可以很复杂,比如内嵌对象。
1、前言 在IM这种讲究高并发、高消息吞吐的互联网场景下,MQ消息中间件是个很重要的基础设施,它在IM系统的服务端架构中担当消息中转、消息削峰、消息交换异步化等等角色,当然MQ消息中间件的作用远不止
此公众号会从消息中间件的一些概念出发,陆续介绍分布式消息中间件的应用领域,涉及的技术等,最后到自己设计和实现一个分布式消息中间件。
本文将深入剖析rocketmq为什么选择自己开发NameServer,而不是选择类似于ZK这样的开源组件。同时对rocketmq的路由注册、路由发现、路由剔除进行剖析。并通过结合核心源码,对笔者的观点进行验证。同时对不同类型消息的重试机制,以及客户端选择nameserver的策略进行深入讲解。
在IM这种讲究高并发、高消息吞吐的互联网场景下,MQ消息中间件是个很重要的基础设施,它在IM系统的服务端架构中担当消息中转、消息削峰、消息交换异步化等等角色,当然MQ消息中间件的作用远不止于此,它的价值不仅仅存在于技术上,更重要的是改变了以往同步处理消息的思路(比如进行IM消息历史存储时,传统的信息系统作法可能是收到一条消息就马上同步存入数据库,这种作法在小并发量的情况下可以很好的工作,但互联网大并发环境下就是灾难)。
很多小伙伴去大厂面试,几乎都会遇到一些开放式的题目,这些开放式的题目没有固定的答案,但是它能够实实在在的体现面试者较为真实的系统设计能力和技术功底。如果你回答的比较完美,那么,通过这种开放式题目,就能够让你从众多的面试者中脱颖而出。
消息队列中间件(简称消息中间件)是指利用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布式系统的集成。通过提供消息传递和消息排队模型,它可以在分布式环境下提供应用解耦、弹性伸缩、冗余存储、流量削峰、异步通信、数据同步等等功能,其作为分布式系统架构中的一个重要组件,有着举足轻重的地位。
ZooKeeper 是一个高可用的分布式数据管理与系统协调框架。基于对 Paxos 算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得 ZooKeeper 解决很多分布式问题。网上对 ZK 的应用场景也有丌少介绍,本文将结合作者身边的项目例子,系统地对ZK 的应用场景进行一个分门归类的介绍。
RabbitMQ是目前非常热门的一款消息中间件,不管是互联网行业还是传统行业都在大量地使用。RabbitMQ凭借其高可靠、易扩展、高可用及丰富的功能特性受到越来越多企业的青睐。作为一个合格的运维工程师,有必要深入地了解RabbitMQ的相关知识,为自己的职业生涯添砖加瓦。
周末和朋友一起自驾去海边玩,去过杨梅坑的应该都知道,从杨梅坑到鹿嘴山庄需要坐快艇过去。
要想设计一个具有高并发的消息中间件,那么首先就要了解下消息中间件涉及哪些具体的知识点。通常,设计一个良好的消息中间件需要了解的知识点如下:
作者个人研发的在高并发场景下,提供的简单、稳定、可扩展的延迟消息队列框架,具有精准的定时任务和延迟队列处理功能。自开源半年多以来,已成功为十几家中小型企业提供了精准定时调度方案,经受住了生产环境的考验。为使更多童鞋受益,现给出开源框架地址:
来源:https://www.jianshu.com/p/8f7ebbcbeee5
领取专属 10元无门槛券
手把手带您无忧上云