首页
学习
活动
专区
圈层
工具
发布

【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

一、RDD#reduceByKey 方法 1、RDD#reduceByKey 方法概念 RDD#reduceByKey 方法 是 PySpark 中 提供的计算方法 , 首先 , 对 键值对 KV...方法工作流程 RDD#reduceByKey 方法 工作流程 : reduceByKey(func) ; 首先 , 对 RDD 对象中的数据 分区 , 每个分区中的相同 键 key 对应的 值 value...; 最后 , 将减少后的 键值对 存储在新的 RDD 对象中 ; 3、RDD#reduceByKey 函数语法 RDD#reduceByKey 语法 : reduceByKey(func, numPartitions...操作,将同一个 Key 下的 Value 相加 rdd2 = rdd.reduceByKey(lambda a, b: a + b) 代码示例 : """ PySpark 数据处理 """ # 导入..._Develop\022_Python\Python39\Lib\site-packages\pyspark\python\lib\pyspark.zip\pyspark\shuffle.py:65:

1.4K20

【Python】PySpark 数据处理 ① ( PySpark 简介 | Apache Spark 简介 | Spark 的 Python 语言版本 PySpark | Python 语言场景 )

一、PySpark 简介 1、Apache Spark 简介 Spark 是 Apache 软件基金会 顶级项目 , 是 开源的 分布式大数据处理框架 , 专门用于 大规模数据处理 , 是一款 适用于...、R和Scala , 其中 Python 语言版本的对应模块就是 PySpark ; Python 是 Spark 中使用最广泛的语言 ; 2、Spark 的 Python 语言版本 PySpark Spark...的 Python 语言版本 是 PySpark , 这是一个第三方库 , 由 Spark 官方开发 , 是 Spark 为 Python 开发者提供的 API ; PySpark 允许 Python...开发者 使用 Python 语言 编写Spark应用程序 , 利用 Spark 数据分析引擎 的 分布式计算能力 分析大数据 ; PySpark 提供了丰富的的 数据处理 和 分析功能模块 : Spark...; 3、PySpark 应用场景 PySpark 既可以作为 Python 库进行数据处理 , 在自己的电脑上进行数据处理 ; 又可以向 Spark 集群提交任务 , 进行分布式集群计算 ; 4、

73110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python大数据之PySpark(三)使用Python语言开发Spark程序代码

    使用Python语言开发Spark程序代码 Spark Standalone的PySpark的搭建----bin/pyspark --master spark://node1:7077 Spark StandaloneHA...的搭建—Master的单点故障(node1,node2),zk的leader选举机制,1-2min还原 【scala版本的交互式界面】bin/spark-shell --master xxx 【python...main pyspark的代码 data 数据文件 config 配置文件 test 常见python测试代码放在test中 应用入口:SparkContext http://spark.apache.org...结果: [掌握-扩展阅读]远程PySpark环境配置 需求:需要将PyCharm连接服务器,同步本地写的代码到服务器上,使用服务器上的Python解析器执行 步骤: 1-准备PyCharm...切记忘记上传python的文件,直接执行 注意1:自动上传设置 注意2:增加如何使用standalone和HA的方式提交代码执行 但是需要注意,尽可能使用hdfs的文件,不要使用单机版本的文件

    99120

    布隆过滤器的Python实现(标准、计

    bloompy github:bloompy 布隆过滤器的Python3实现,包括标准、计数、标准扩容、计数扩容。更新自pybloom。...安装 pip install bloompy 使用 通过bloompy你可以使用四种布隆过滤器 标准布隆过滤器 标准布隆过滤器只能进行数据的查询和插入,是下面几种过滤器的基类,可以进行过滤器的存储和恢复...内置默认使用4位二进制位来表示标准布隆过滤器的1个位,从而实现可以增减。...标准扩容布隆过滤器 当插入的元素个数超过当前过滤器的容量时,自动增加过滤器的容量,默认内置一次扩容2倍。支持查询和插入功能。...,过滤器会自动增加内置的标准过滤器, #每次增加2倍容量,自动实现扩容 >>> for i in range(1000): sbf.add(i) >>> 600 in sbf True

    2.5K10

    PySpark简介

    此外,由于Spark处理内存中的大多数操作,因此它通常比MapReduce更快,在每次操作之后将数据写入磁盘。 PySpark是Spark的Python API。...重新启动shell会话以使PATH的更改生效。 检查你的Python版本: python --version Java JDK 8 本节中的步骤将在Ubuntu 16.04上安装Java 8 JDK。...尽管Scala提供了比Python更好的性能,但Python更容易编写并且具有更多的库。根据用例,Scala可能优于PySpark。 下载Debian软件包并安装。...虽然可以完全用Python完成本指南的大部分目标,但目的是演示PySpark API,它也可以处理分布在集群中的数据。 PySpark API Spark利用弹性分布式数据集(RDD)的概念。...reduceByKey是通过聚合每个单词值对来计算每个单词的转换。

    7.5K30

    Python大数据之PySpark(六)RDD的操作

    分区间:有一些操作分区间做一些累加 alt+6 可以调出来所有TODO, TODO是Python提供了预留功能的地方 ''' if __name__ == '__main__': #TODO: 1-...分区间:有一些操作分区间做一些累加 alt+6 可以调出来所有TODO, TODO是Python提供了预留功能的地方 ''' def addNum(x,y): return x+y if __name...------答案:result.mapValue(list).collect reduceByKey foldBykey aggregateByKey CombineByKey:这是一个更为底层实现的...bykey 聚合算子,可以实现更多复杂功能 案例1: # -*- coding: utf-8 -*- # Program function:完成单Value类型RDD的转换算子的演示 from...:有一些操作分区间做一些累加 alt+6 可以调出来所有TODO, TODO是Python提供了预留功能的地方 ''' ''' 对初始值进行操作 ''' def createCombiner(value

    49650

    spark入门框架+python

    spark安装及配置部分可以参看:https://mp.csdn.net/postedit/82346367 pyspark 下面介绍的例子都是以python为框架 因为spark自带python...apt-get install ipython-notebook 安装好后就可以启动了: ipython notebook 配置: sudo vim /etc/bash.bashrc export PYSPARK_DRIVER_PYTHON...=ipython export PYSPARK_DRIVER_PYTHON_OPTS="notebook" source /etc/bash.bashrc 然后再次使用pyspark启动时就会自动启动IPython...(核心): spark中的一些算子都可以看做是transformation,类如map,flatmap,reduceByKey等等,通过transformation使一种GDD转化为一种新的RDD。...reduceByKey:有三个参数,第一个和第二个分别是key,value,第三个是每次reduce操作后返回的类型,默认与原始RDD的value类型相同, ? ? sortByKey:排序 ?

    1.6K20

    使用Python写spark 示例

    个人GitHub地址: https://github.com/LinMingQiang 为什么要使用Python来写Spark Python写spark我认为唯一的理由就是:你要做数据挖掘,AI相关的工作...因为很多做数挖的他们的基础语言都是python,他们如果重新学scala比较耗时,而且,python他的强大类库是他的优势,很多算法库只有python有。...Win本地编写代码调试 编辑器:PyCharm Spark:1.6 Python:2.7 Win环境准备 Python的安装 解压python包,在环境变量里面配上bin的路径 Spark的安装...counts = rdd \ .flatMap(lambda line: line) \ .map(lambda word: (word, 1)) \ .reduceByKey...那你需要把spark的bin包下面的python的所有都拷贝到(可能需要解压py4j) %PYTHON%\Lib\site-packages下面去。这样,你的编辑器才能找到。

    1.3K10

    Windows 安装配置 PySpark 开发环境(详细步骤+原理分析)

    验证py4j是否安装成功:python >>>import py4j回车 ? 1.4 Python中安装PySpark模块 同样也是那两种方法 (1)使用pip安装pyspark。...pip install pyspark 会安装最新的版本的pyspark。...(2)或者,将解压的spark安装包中的D:\spark-2.3.1-bin-hadoop2.6\python\pyspark拷贝到D:\ProgramData\Anaconda3\Lib\site-packages...Python 开发 Spark原理 使用 python api 编写 pyspark 代码提交运行时,为了不破坏 spark 原有的运行架构,会将写好的代码首先在 python 解析器中运行(cpython...),Spark 代码归根结底是运行在 JVM 中的,这里 python 借助 Py4j 实现 Python 和 Java 的交互,即通过 Py4j 将 pyspark 代码“解析”到 JVM 中去运行。

    16.7K30
    领券
    首页
    学习
    活动
    专区
    圈层
    工具
    MCP广场