" 物理地址空间 “ 是 CPU 处理器 在 ” 总线 " 上 访问内存的地址 ,
4. 空指针(null pointer)指向了内存的什么地方(空指针的内部实现)?
内存虚拟化是一个很大的话题,最近安全部门发现了一个qemu内存虚拟化的安全漏洞,反馈给云平台让解决,感觉很棘手,引起了我对内存虚拟化的思考,想到什么问题就把思考记录下来。
廖威雄,目前就职于珠海全志科技股份有限公司从事linux嵌入式系统(Tina Linux)的开发,主要负责文件系统和存储的开发和维护,兼顾linux测试系统的设计和持续集成的维护。
上篇文章(【i.MX6ULL】驱动开发3——GPIO寄存器配置原理),介绍了i.MX6ULL芯片的GPIO的工作原理与寄存器配置。
上一节内容的学习我们知道了CPU是如何访问内存的,CPU拿到内存后就可以向其它人(kernel的其它模块、内核线程、用户空间进程、等等)提供服务,主要包括: 以虚拟地址(VA)的形式,为应用程序提供远大于物理内存的虚拟地址空间(Virtual Address Space) 每个进程都有独立的虚拟地址空间,不会相互影响,进而可提供非常好的内存保护(memory protection) 提供内存映射(Memory Mapping)机制,以便把物理内存、I/O空间、Kernel Image、文件等对象映射到相应进
上一节内容的学习我们知道了CPU是如何访问内存的,CPU拿到内存后就可以向其它人(kernel的其它模块、内核线程、用户空间进程、等等)提供服务,主要包括:
该文介绍了如何利用 VMware 的克隆功能在 Linux 虚拟机中配置多个 IP,并实现相互 ping 通。包括步骤:关闭虚拟机、克隆虚拟机、修改虚拟机的 IP 配置、关闭防火墙、重启虚拟机。
毋庸置疑,虚拟内存是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
毋庸置疑,虚拟内存绝对是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。
前不久组内又有一次我比较期待的分享:“Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题。
1)物理地址:CPU地址总线传来的地址,由硬件电路控制其具体含义。物理地址中很大一部分是留给内存条中的内存的,但也常被映射到其他存储器上(如显存、BIOS等)。在程序指令中的虚拟地址经过段映射和页面映射后,就生成了物理地址,这个物理地址被放到CPU的地址线上。
前面Linux专题中关于Linux下系统编程总结了17篇博文,主要是为了提高Linux下的C编程应用能力,熟悉Linux编程应用环境,从此篇博文起开始Linux驱动的总结,后面计划加一些综合实践项目练习。
Linux 内存管理模型非常直接明了,因为 Linux 的这种机制使其具有可移植性并且能够在内存管理单元相差不大的机器下实现 Linux,下面我们就来认识一下 Linux 内存管理是如何实现的。
Kmalloc分配的是连续的物理地址空间。如果需要连续的物理页,可以使用此函数,这是内核中内存分配的常用方式,也是大多数情况下应该使用的内存分配方式。
来源 | https://zhenbianshu.github.io/ 前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。 之前了解一些操作系统的概念,主要是毕业后对自己大学四年的荒废比较懊恼,觉得自己有些对不起计算机专业出身,于是在工作之余抽出时间看了哈工大在网易云课堂的操作系统公开课,自己也读了一本讲操作系统比较浅的书 《Linux内核设计与实现》,而且去年自己用 C
程序到运行主要经过程序(外存)编译,链接,装入(内存)。《程序如何运行:编译、链接、装》:
理解Linux内核最好预备的知识点 Linux内核的特点 Linux内核的任务 内核的组成部分 哪些地方用到了内核机制? Linux进程 Linux创建新进程的机制 Linux线程 内核线程 地址空间与特权级别 虚拟地址与物理地址 特权级别(Linux的两种状态) 系统调用 设备驱动程序、块设备和字符设备 网络 文件系统
Leo Hou,目前就职于IC行业某硬件数据加速独角兽企业,从事虚拟化方向,聚焦于基于QEMU/KVM的IO虚拟化和系统虚拟化,主要负责虚拟化相关方案和团队建设。
There are only two hard things in Computer Science: cache invalidation and naming things.
在第一篇文章中,我们就提到,现代操作系统是从最古老的 8086 系统一步一步发展而来的。
不是白白浪费了 CPU 的资源吗? 官方解释说,因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。
到目前为止,内存管理是unix内核中最复杂的活动。我们简单介绍一下内存管理,并通过实例说明如何在内核态获得内存。
对于精通 CURD 的业务同学,内存管理好像离我们很远,但这个知识点虽然冷门(估计很多人学完根本就没机会用上)但绝对是基础中的基础。
我们安装好了一个虚拟机,我想做分布式集群,想模拟几台服务器,这时就想直接复制已经有的安装好的虚拟机,这样比较省事,不要在重复的安装虚拟机并配置JAVA环境,省掉做同样的事情,这时直接复制,这样之前配置的JAVA环境都有了。
于浩进,linux内核爱好者,现就职于北京灵汐科技有限公司,任职BSP工程师,主要负责IP验证、多媒体驱动开发及一些bring up等工作。
一、内存管理架构 二、虚拟地址空间布局架构 三、物理内存体系架构 四、内存结构 五、内存模型 六、虚拟地址和物理地址的转换 七、内存映射原理分析 一、内存管理架构 内存管理子系统架构可以分为:用户空间、内核空间及硬件部分3个层面,具体结构如下所示:1、用户空间:应用程序使用malloc()申请内存资源/free()释放内存资源。2、内核空间:内核总是驻留在内存中,是操作系统的一部分。内核空间为内核保留,不允许应用程序读写该区域的内容或直接调用内核代码定义的函数。3、硬件:处理器包含一个内存管理单元(Memo
内核文档Documentation/arm64/memory.rst描述了ARM64 Linux内核空间的内存映射情况,应该是此方面最权威文档。
这本书是个人看过的讲操作系统底层里面讲的最通俗易懂的了,但是200多页的内容确实讲不了多深的内容,所以不要对这本书抱有过高期待,当一个入门书了解即可。
ARP(Address Resolution Protocol)是一种用于解析网络层的IP地址和链路层的物理地址之间关系的协议。它主要用于在局域网中查找目标设备的物理地址,以确保数据包能够正确地从源设备传递到目标设备。
最近一直在学习内存管理,也知道MMU是管理内存的映射的逻辑IP,还知道里面有个TLB。
用户空间(User Space) :用户空间又包括用户的应用程序(User Applications)、C 库(C Library) 。
导语:掐指一算自己从研究生开始投入到Linux的海洋也有几年的时间,即便如此依然对其各种功能模块一知半解。无数次看了Linux内核的技术文章后一头雾水,为了更系统地更有方法的学Linux,特此记录。 历史 1991年,还在芬兰赫尔辛基大学上学的Linus Torvalds在自己的Intel 386计算机上开发了属于他自己的第一个程序,并利用Internet发布了他开发的源代码,将其命名为Linux,从而创建了Linux操作系统,并在同年公开了Linux的代码,从而开启了一个伟大的时代。在之后的将近30年的
只要确定了 IP 地址后,就能够向这个 IP 地址所在的主机发送数据报。但是再往深了想,IP 地址只是标识网络层的地址,那么在网络层下方数据链路层是不是也有一个地址能够告诉对方主机自己的地址呢?是的,这个地址就是MAC 地址。
导语:掐指一算自己从研究生开始投入到Linux的海洋也有几年的时间,即便如此依然对其各种功能模块一知半解。无数次看了Linux内核的技术文章后一头雾水,为了更系统地更有方法的学Linux,特此记录。 历史 1991年,还在芬兰赫尔辛基大学上学的Linus Torvalds在自己的Intel 386计算机上开发了属于他自己的第一个程序,并利用Internet发布了他开发的源代码,将其命名为Linux,从而创建了Linux操作系统,并在同年公开了Linux的代码,从而开启了一个伟大的时代。在之后的将近30
上篇文章(【i.MX6ULL】驱动开发4--点亮LED(寄存器版))介绍了在驱动程序中,直接操作寄存器了点亮LED。本篇,介绍另外一种点亮LED的方式——设备树,该方式的本质也是操作寄存器,只是寄存器的相关信息放在了设备树中,配置寄存器时需要使用OF函数从设备树中读取处寄存器数据后再进行配置。
之前通过读取/proc/pid/mem的方法读取某个进程的内存数据,mem内部是用copy_from_user实现的,是对虚拟地址进行的操作。但是在某一时刻,该进程的所有内存页不一定都已经被加载到内存。由于虚拟内存的存在,只有那页代码被访问到时(copy_from_user()会判断缺页的情况),才会产生缺页中断,将该页代码加载到内存。这种方式并不够理想,理想的方法是判断哪些数据页已加载到内存中,然后对其进行度量。
MMU概念介绍 MMU分为两个部分: TLB maintenance 和 address translation MMU的作用,主要是完成地址的翻译,无论是main-memory地址(DDR地址),还是IO地址(设备device地址),在开启了MMU的系统中,CPU发起的指令读取、数据读写都是虚拟地址,在ARM Core内部,会先经过MMU将该虚拟地址自动转换成物理地址,然后在将物理地址发送到AXI总线上,完成真正的物理内存、物理设备的读写访问。 下图是一个linux kernel系统中宏观的虚拟地址到物
端口(port)是接口电路中能被CPU直接访问的寄存器的地址。几乎每一种外设都是通过读写设备上的寄存器来进行的。CPU通过这些地址即端口向接口电路中的寄存器发送命令,读取状态和传送数据。外设寄存器也称为“I/O端口”,通常包括:控制寄存器、状态寄存器和数据寄存器三大类,而且一个外设的寄存器通常被连续地编址。
冯-诺依曼老爷子告诉过我们,算术逻辑单元和控制器单元组成的 CPU 负责进行运算以及程序流程的控制。运算所需要的指令和数据由 内存 来提供。
区别与直接调度片上资源/使用物理平台,使用虚拟化技术对于资源的调度会更加灵活和高效,而且可以达到硬隔离的目的;
DMA remapping就是在DMA的过程中IOMMU进行了一次转换,MMU把CPU的虚拟地址(va)转换成物理地址(pa),IOMMU的作用就是把DMA的虚拟地址(iova)转换成物理地址(pa),MMU转换时用到了pagetable,IOMMU转换也要用到io pagetable,两者都是软件负责创建pagetable,硬件负责转换。IOMMU的作用就是限制DMA可操作的物理内存范围,当一个PCI设备passthrough给虚拟机后,PCI设备DMA的目的地址是虚拟机指定的,必须要有IOMMU限制这个PCI设备只能操作虚拟机用到的物理内存。
熟悉以上操作系统名词对于的后续介绍Android内存管理比较重要,请大家认真阅读.如果的比较熟悉上述几个关键名词,此章节可以跳过
在用户的视角里,每个进程都有自己独立的地址空间,A进程的4GB和B进程4GB是完全独立不相关的,他们看到的都是操作系统虚拟出来的地址空间。但是呢,虚拟地址最终还是要落在实际内存的物理地址上进行操作的。操作系统就会通过页表的机制来实现进程的虚拟地址到物理地址的翻译工作。其中每一页的大小都是固定的。这一段我不想介绍的太过于详细,对这个概念不熟悉的同学回去翻一下操作系统的教材。
导读:近日,国际顶级设计自动化大会DAC大会公布DAC 2020会议议程和论文名单,由百度安全发表的《DRAMDig: AKnowledge-assisted Tool to Uncover DRAM Address Mapping》成功入选。
虚拟内存就是在你电脑的物理内存不够用时把一部分硬盘空间作为内存来使用,这部分硬盘空间就叫作虚拟内存。
领取专属 10元无门槛券
手把手带您无忧上云