这篇文章介绍Linux下线程同步与互斥机制–互斥锁,在多线程并发的时候,都会出现多个消费者取数据的情况,这种时候数据都需要进行保护,比如: 火车票售票系统、汽车票售票系统一样,总票数是固定的,但是购票的终端非常多。
同步是指协调多个执行线程或进程的执行,以确保它们按照一定的顺序执行或在特定的条件下等待。常见的同步机制包括信号量、条件变量和屏障等。
---- Hello、Hello大家好,我是木荣,今天我们继续来聊一聊Linux中多线程编程中的重要知识点,详细谈谈多线程中同步和互斥机制。 同步和互斥 互斥:多线程中互斥是指多个线程访问同一资源时同时只允许一个线程对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的; 同步:多线程同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源
1、多线程的问题引入 多线程的最大的特点是资源的共享,但是,当多个线程同时去操作(同时去改变)一个临界资源时,会破坏临界资源。如利用多线程同时写一个文件: #include <stdio.h> #include <pthread.h> #include <malloc.h> const char filename[] = "hello"; void* thread(void *id){ int num = *(int *)id; // 写文件的操作 F
典型的UNIX系统都支持一个进程创建多个线程(thread)。在Linux进程基础中提到,Linux以进程为单位组织操作,Linux中的线程也都基于进程。尽管实现方式有异于其它的UNIX系统,但Linux的多线程在逻辑和使用上与真正的多线程并没有差别。 多线程 我们先来看一下什么是多线程。在Linux从程序到进程中,我们看到了一个程序在内存中的表示。这个程序的整个运行过程中,只有一个控制权的存在。当函数被调用的时候,该函数获得控制权,成为激活(active)函数,然后运行该函数中的指令。与此同时,其它的函数
linux内核中有多种内核锁,内核锁的作用是: 多核处理器下,会存在多个进程处于内核态的情况,而在内核态下,进程是可以访问所有内核数据的,因此要对共享数据进行保护,即互斥处理; linux内核锁机制有信号量、互斥锁、自旋锁还有原子操作。 一、信号量(struct semaphore): 是用来解决进程/线程之间的同步和互斥问题的一种通信机制,是用来保证两个或多个关键代码不被并发调用。 信号量(Saphore)由一个值和一个指针组成,指针指向等待该信号量的进程。信号量的值表示相应资源的使用情况。信号量S>=0
实时分为硬实时和软实时,硬实时要求绝对保证响应时间不超过期限,如果超过期限,会造成灾难性的后果,例如汽车在发生碰撞事故时必须快速展开安全气囊;软实时只需尽力使响应时间不超过期限,如果偶尔超过期限,不会造成灾难性的后果.
初学者在使用 多线程 并发执行任务时一定会遇到 并发访问的问题,最直观的感受就是每次运行得出的结果值大概率不一致,这种执行结果不一致的现象是非常致命,因为它具有随机性,即结果可能是对的,也可能是错的,无法可靠的完成任务,类似物理学神兽 薛定谔的猫
进程在多数早期多任务操作系统中是执行工作的基本单元。进程是包含程序指令和相关资源的集合,每个进程和其他进程一起参与调度,竞争 CPU 、内存等系统资源。每次进程切换,都存在进程资源的保存和恢复动作,这称为上下文切换。进程的引入可以解决多用户支持的问题,但是多进程系统也在如下方面产生了新的问题:进程频繁切换引起的额外开销可能会严重影响系统性能。
信号量强调的是线程(或进程)间的同步:“信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在sem_wait的时候,就阻塞在那里)。当信号量为单值信号量时,也可以完成一个资源的互斥访问。信号量测重于访问者对资源的有序访问,在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。
铺垫 在Java SE 1.5之前,多线程并发中,synchronized一直都是一个元老级关键字,而且给人的一贯印象就是一个比较重的锁。 为此,在Java SE 1.6之后,这个关键字被做了很多的优化,从而让以往的“重量级锁”变得不再那么重。 synchronized主要有两种使用方法,一种是代码块,一种关键字写在方法上。 这两种用法底层究竟是怎么实现的呢?在1.6之前是怎么实现的呢? 字节码实现原理 在java语言中存在两种内建的synchronized语法:1、synchronized语句;2、s
线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期,solaris是这方面的佼佼者。传统的Unix也支持线程的概念,但是在一个进程(process)中只允许有一个线程,这样多线程就意味着多进程。现在,多线程技术已经被许多操作系统所支持,包括Windows/NT,当然,也包括Linux。 为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题。 使用多线程的理由之一是和进程相比,它是一种非常”节俭”的多任务操作方式。我们知道,在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种”昂贵”的多任务工作方式。而运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间,而且,线程间彼此切换所需的时间也远远小于进程间切换所需要的时间。据统计,总的说来,一个进程的开销大约是一个线程开销的30倍左右,当然,在具体的系统上,这个数据可能会有较大的区别。 使用多线程的理由之二是线程间方便的通信机制。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,有的子程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地方。 除了以上所说的优点外,不和进程比较,多线程程序作为一种多任务、并发的工作方式,当然有以下的优点: 1) 提高应用程序响应。这对图形界面的程序尤其有意义,当一个操作耗时很长时,整个系统都会等待这个操作,此时程序不会响应键盘、鼠标、菜单的操作,而使用多线程技术,将耗时长的操作(time consuming)置于一个新的线程,可以避免这种尴尬的情况。 2) 使多CPU系统更加有效。操作系统会保证当线程数不大于CPU数目时,不同的线程运行于不同的CPU上。 3) 改善程序结构。一个既长又复杂的进程可以考虑分为多个线程,成为几个独立或半独立的运行部分,这样的程序会利于理解和修改。 下面我们先来尝试编写一个简单的多线程程序。
桔妹导读:死锁是多线程和分布式程序中常见的一种严重问题。死锁是毁灭性的,一旦发生,系统很难或者几乎不可能恢复;死锁是随机的,只有满足特定条件才会发生,而如果条件复杂,虽然发生概率很低,但是一旦发生就非常难重现和调试。使用锁而产生的死锁是死锁中的一种常见情况。Linux 内核使用 Lockdep 工具来检测和特别是预测锁的死锁场景。然而,目前 Lockdep 只支持处理互斥锁,不支持更为复杂的读写锁,尤其是递归读锁(Recursive-read lock)。因此,Lockdep 既会出现由读写锁引起的假阳性预测错误,也会出现假阴性预测错误。
通过对线程与线程控制的相关知识点的编程学习和锻炼,培养学生们对线程相关实例问题的分析与解决能力。
多线程编程已经成为了现代软件开发的重要组成部分。对于Linux操作系统而言,多线程的支持和实现更是被广泛应用。本文将通过详细解析Linux操作系统中的多线程概念、线程的创建与管理、同步与互斥、线程间通信等方面,并结合示例代码,来深入探讨Linux的多线程编程。
在单线程的程序里,有两种基本的数据:全局变量和局部变量。但在多线程程序里,还有第三种数据类型:线程数据(TSD: Thread-Specific Data)。
在面试过程中,死锁也是高频的考点,因为如果线上环境真多发生了死锁,那真的出大事了。
因为现代操作系统是多处理器计算的架构,必然更容易遇到多个进程,多个线程访问共享数据的情况,如下图所示:
很多时候,我们做项目并不会创建那么多进程,而是创建一个进程,在该进程中创建多个线程进行工作。
该文章的大部分内容都是翻译自是黑莓 10 实时操作系统 QNX Neutrino 的开发手册,该手册不仅详细地阐述了 BlackBerry 10 OS 的原理以及 OS 的体系结构,还描述了其 QNX Neutrino 微内核的详细信息 (包括进程线程、多和处理、网络架构、文件系统等...非常完整..)。
这些问题我在面试的时候也经常问。你需要对这个Wait方法的内部机制有所了解才能回答上来。
在现代操作系统里,同一时间可能有多个内核执行流在执行,因此内核其实像多进程多线程编程一样也需要一些同步机制来同步各执行单元对共享数据的访问,尤其是在多处理器系统上,更需要一些同步机制来同步不同处理器上的执行单元对共享的数据的访问。在主流的Linux内核中包含了如下这些同步机制包括:
鲜衣怒马少年时,不负韶华行且知。 -- 鹊桥仙
在多任务环境下,往往存在多个任务竞争同一共享资源的应用场景,互斥锁可被用于对共享资源的保护从而实现独占式访问。互斥锁(mutex)又称互斥型信号量,是一种特殊的二值信号量,用于实现对共享资源的独占式处理。另外,Huawei LiteOS提供的互斥锁通过优先级继承算法,解决了优先级翻转问题。
在Rust源代码中,rust/library/std/src/sys/unsupported/time.rs文件的作用是提供对于时间的支持,特别是在不支持的操作系统上。
Linux互斥与同步 零、前言 一、Linux线程互斥 1、基本概念及引入 2、互斥量mutex介绍 3、互斥量的使用 4、互斥量原理 二、可重入/线程安全 1、基本概念 2、线程安全 3、重入函数 4、联系与区别 三、常见锁概念 四、Linux线程同步 1、基本概念 2、条件变量的使用 3、条件变量等待 4、条件变量使用规范 五、POSIX信号量 1、信号量概念及介绍 2、信号量的使用 零、前言 本章主要讲解学习Linux中对多线程的执行中的同步与互斥 一、Linux线程互斥 1、基本概念及引入 互
尽管信号量已经可以实现互斥的功能,但是“正宗”的mutex在Linux内核中还是真实地存在着。尤其是在Linux内核代码中,更多能看到mutex的身影。
mutex.go文件是Go语言中同步原语之一的mutex(互斥锁)的实现。互斥锁是一种多线程程序中,用于协调对共享资源的访问的机制。实现原理是在进入临界区前先尝试获取锁,若锁已被其他线程持有,则该线程等待锁的释放;若锁未被持有,则该线程获取锁并进入临界区进行操作,操作完毕后释放锁,让其他线程可以获取该锁进入临界区。
最后运行的结果不是固定的,有可能是0、-1,如果有这个ticket_num变量代表是库存的话,那么就会出现库存为负数的情况,所以需要引入线程同步来保证线程安全。
面试中经常会被问到高性能服务模型选择对比,以及如何提高服务性能和处理能力,这其中涉及操作系统软件和计算机硬件知识,其实都是在考察候选人的基础知识掌握程度,但如果没准备的话容易一头雾水,这次带大家从头到尾学习一遍,学完这一篇再也不怕面试官刨根问底了!
在线程并发执行的时候,我们需要保证临界资源的安全访问,防止线程争抢资源,造成数据二义性。
和前面讲到的 python线程互斥锁Lock 类似,当有多个进程Process同时读写同一个文件时,为了避免数据读写产生异常,我们需要为正在操作的进程加上互斥锁,互斥锁的原理不管是对线程threading还是对进程Process而言都是一样。
② 声明线程 ID : 线程 ID 类型是 pthread_t 类型的 , 其本质是 int 类型 ;
操作系统(Operating System,简称OS)是计算机系统中的核心软件,它管理计算机硬件资源,提供程序运行的环境,并作为用户与计算机硬件之间的接口。操作系统的主要目标是提高计算效率,简化用户操作,并使计算机系统的使用更加方便和高效。
互斥锁是传统的并发程序对共享资源进行访问控制的主要手段。它由标准库代码包sync中的Mutex结构体类型代表。sync.Mutex类型(确切地说,是*sync.Mutex类型)只有两个公开方法——Lock和Unlock。顾名思义,前者被用于锁定当前的互斥量,而后者则被用来对当前的互斥量进行解锁。 类型sync.Mutex的零值表示了未被锁定的互斥量。也就是说,它是一个开箱即用的工具。我们只需对它进行简单声明就可以正常使用了,就像这样:
线程同步机制引入 : 多个线程读取同一个资源时 , 可能会造成冲突 , 因此需要引入线程同步机制 , 让多个线程按照一定规则对共享的资源进行操作 ;
在MySQL种,执行show engine innodb status \G 经常会看到里面有spin lock 及mutex的情况。我们有必要了解下这些知识。
说明:本篇博客整理自文末的多篇参考博客(每篇博客各有侧重)。本文结合源码对Unsafe的park和unpark方法进行了完整全面的梳理,并对部分参考博客中存在的错误描述进行说明。
在本节,我们对Go语言所提供的与锁有关的API进行说明。这包括了互斥锁和读写锁。我们在第6章描述过互斥锁,但却没有提到过读写锁。这两种锁对于传统的并发程序来说都是非常常用和重要的。 一、互斥锁 互斥锁是传统的并发程序对共享资源进行访问控制的主要手段。它由标准库代码包sync中的Mutex结构体类型代表。sync.Mutex类型(确切地说,是*sync.Mutex类型)只有两个公开方法——Lock和Unlock。顾名思义,前者被用于锁定当前的互斥量,而后者则被用来对当前的互斥量进行解锁。 类型sync.Mut
我们对Go语言所提供的与锁有关的API进行说明。这包括了互斥锁和读写锁。我们在第6章描述过互斥锁,但却没有提到过读写锁。这两种锁对于传统的并发程序来说都是非常常用和重要的。
在信号量最后的部分说,当count=1的时候可以用信号量实现互斥。在早期的Linux版本中就是当count=1来实现mutex的。
实时系统要求对事件的响应时间不能超过规定的期限,响应时间是指从某个事件发生到负责处理这个事件的进程处理完成的时间间隔,最大响应时间应该是确定的、可以预测的。
Linux 内核提供了一个遵守上面语义的旗标实现, 尽管术语有些不同. 为使用旗标, 内核 代码必须包含 <asm/semaphore.h>. 相关的类型是 struct semaphore; 实际旗标可以用 几种方法来声明和初始化. 一种是直接创建一个旗标, 接着使用 sema_init 来设定它:
在 Linux 系统中,当多个线程并行执行时,如果需要访问同一个资源,那么在访问资源的地方,需要使用操作系统为我们提供的同步原语来进行保护。同步原语包括:互斥锁、条件变量、信号量等,被保护的代码称作“临界区”。
领取专属 10元无门槛券
手把手带您无忧上云