在XR806的示例程序中GPIO工程的基础上进行移植。在gpio示例文件夹中添加lcd的驱动代码。
内核定时器是内核用来控制在未来某个时间点(基于jiffies(节拍总数))调度执行某个函数的一种机制,相关函数位于 <linux/timer.h> 和 kernel/timer.c 文件中。
最近在学习树莓派的GPIO,想用Python来读取DHT11温湿度传感器的数据,DHT11是使用单总线通信的,需要用到微秒级的延时,使用sleep()函数好像没法达到要求,然后我发现时间戳可以精确到小数点后7位,也就是0.1微秒,虽然实际应该达不到这样的精度,但应该还是够用的。
R128-DevKit 拥有4颗 WS2812 LED,本文将详细叙述如何点亮他们。
“我叮咛你的 你说 不会遗忘 你告诉我的 我也全部珍藏 对于我们来说 记忆是飘不落的日子 永远不会发黄 相聚的时候 总是很短 期待的时候 总是很长 岁月的溪水边 捡拾起多少闪亮的诗行 如果你要想念我 就望一望天上那 闪烁的繁星 有我寻觅你的 目光” 谢谢你,曾经来过~ 中断与定时器是我们再熟悉不过的问题了,我们在进行裸机开发学习的 时候,这几乎就是重难点,也是每个程序必要的模块信息,那么在Linux中,我们又怎么实现延时、计数,和中断呢? 一、中断 1.概述 所谓中断是指cpu在执行程序的过程中,出现了某些
是delay to do 还是delay doing 还是delay do?还是什么啊~~ 问下
每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。
SysTick定时器是存在于系统内核的一个滴答定时器,只要是ARM Cortex-M0/M3/M4/M7内核的MCU都包含这个定时器,它是一个24位的递减定时器,当计数到 0 时,将从RELOAD 寄存器中自动重装载定时初值,开始新一轮计数。使用内核的SysTick定时器来实现延时,可以不占用系统定时器,由于和MCU外设无关,所以代码的移植,在不同厂家的Cortex-M内核MCU之间,可以很方便的实现。而东芝的这款TT_M3HQ开发板使用的TMPM3HQFDFG芯片,正好是ARM Cortex-M3内核,所以以前使用的延时函数,可以直接拿过来使用,无需任何修改。
工作队列常见的使用形式是配合中断使用,在中断的服务函数里无法调用会导致休眠的相关函数代码,有了工作队列机制以后,可以将需要执行的逻辑代码放在工作队列里执行,只需要在中断服务函数里触发即可,工作队列是允许被重新调度、睡眠。
文章 < FreeRTOS 任务调度 任务切换 > 记录了 FreeRTOS 中任务切换的过程, 提到触发任务切换的两种情况 : 高优先级任务就绪抢占和同优先级任务时间共享(包括提前挂起)。 系统中,时间延时和任务阻塞,时间片都以 Systick 为单位。
VS1053是一款硬件编解码的音频芯片,提供SPI接口和IIS接口两种通信协议,这篇文章是介绍在Linux下如果模拟SPI时序来操作VS1053完成录音、播放音频歌曲功能。但是没有注册标准的音频驱动,没有对接音频框架,只是在驱动层完成VS1053的直接控制,本篇的重点主要是介绍如何初始化开发板的GPIO口,使用Linux的延时函数,模拟SPI时序,代码写了两种版本,一种是直接通过ioremap直接映射GPIO口地址,完成配置,一种是直接调用官方内核提供的库函数接口,完成GPIO口初始化,控制。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/151733.html原文链接:https://javaforall.cn
这篇文章主要介绍Linux下时间处理的相关函数与操作。 比如: 系统时间设置,读取、RTC时间设置,读取、时间单位转换、延时函数、闹钟信号等等。
SysTick定时器(又名系统滴答定时器)是存在于Cortex-M3的一个定时器,只要是ARM Cotex-M系列内核的MCU都包含这个定时器。使用内核的SysTick定时器来实现延时,可以不占用系统定时器,节约资源。由于SysTick是在CPU核内部实现的,跟MCU外设无关,因此它的代码可以在不同厂家之间移植。
在之前的文章中,讲解中断处理相关的概念的时候,提到过有些任务不是紧急的,可以延后一段时间执行。因为中断服务例程都是顺序执行的,在响应一个中断的时候不应该被打断。相反,这些可延时任务执行时,可以使能中断。那么,将这些任务从中断处理程序中剥离出来,可以有效地保证内核对于中断响应时间尽可能短。这对于时间苛刻的应用来说,这是一个很重要的属性,尤其是那些要求中断请求必须在毫秒级别响应的应用。
C\C++标准库中提供了两种计时函数clock()和time()。其用法如下: (1)clock()函数用法
写Linux应用时用到睡眠函数,比如sleep,usleep,但是将应用移植到Windows系统却是编译错误。本文解决Linux与Windows睡眠函数的兼容性问题。 1.宏替换实现 使用Qt的Q_OS_WIN32宏识别系统,读者可以改用其他宏来识别系统。 Windows系统的Sleep睡眠函数单位是毫秒。 Linux系统的sleep睡眠函数单位是秒。 使用宏扩展出msleep睡眠函数单位是毫秒。 #include <QCoreApplication> #ifdef Q_OS_WIN32 #include
很高兴有机会参加本次极术社区举办的“「免费试用」搭载安谋科技STAR-MC1的全志XR806 Wi-Fi+BLE 开发板试用活动”。 去年就对全志的mcu芯片感兴趣了,一直没有机会接触,看到本次极术社区提供的全志wifi + BLE开发板试用,就马上参加了。板子拿到手之后,很快就搭建好了环境,由于自己时间安排的问题,一直没有空搞,这两天赶紧搞了一下。
本节介绍的是有关LED灯的控制,也就是控制那8个小灯的熄灭与点亮,在这之前,先来补一下有关电路的一些知识点吧,LED模块原理图如下所示。
所需要了解的信息 1、每一条汇编指令需要占用几个时钟周期,方便计算多少时间 2、时钟周期为1M时,其倒数为时间1us
Systick的四个寄存器: CTRL SysTick 控制和状态寄存器 LOAD SysTick 自动重装载除值寄存器 VAL SysTick 当前值寄存器 CALIB SysTick 校准值寄存器
SysTick是滴答定时器,在相应的时间间隔内对变量进行操作(通过执行SysTick中断函数实现)。所以在比赛和学习中被组合成准确延时函数。
Linux2.6版本中引入了工作队列概念,代替Linux2.4版本中的任务队列。用以实现注册激活某些函数,留待稍后由工作线程执行(与tasklet的处理类似)。
DS18B02芯片可以说是在蓝桥杯中是极为常考的一个芯片模块了,熟练掌握是必须的。 简单说明一下吧:温度读取时候呢?首先读出的是温度的低八位,其次读出的是温度的高八位,组成一个16位的二进制值就是DS18B20测量到的温度值。16位中的高5位代表着温度值的正负,一般环境下就没有必要考虑了,因为我们身边的环境温度都是高于零度的啦。最低的4位呢是小数位,需要显示小数位的时候就需要进行处理,没有这方面的要求时候可以直接忽略了。
小林:有可移植解决方法。下面是一些你可以在你的系统中寻找的函数: clock(), delay(), ftime(), getimeofday(), msleep(), nap(), napms(),
用ffmpeg来做音视频同步,个人认为这个是ffmpeg基础处理中最难的一个,无数人就卡在这里,怎么也不准,本人也是尝试过网上各种demo,基本上都是渣渣,要么仅仅支持极其少量的视频文件比如收到的数据包是一帧视频一帧音频的,要么根本没法同步歪七八糟的,要么进度跳过去直接蹦蹦蹦崩溃的,其实最完美的音视频同步处理demo就是ffplay,我亲测过几十种各种各样的音视频本地文件,数十种视频流文件,都是非常完美,当然啦这是亲生的啦,不完美还玩个屁。
首先,介绍下原理。下图为主控芯片和流水灯模块的原理图。流水灯模块接在单片机的P1口,由原理图可以知道,在P1口给一个低电平即可点亮LED灯。相反,如果要LED灯熄灭,就要把P1口的电平变为高电平即可。要实现流水灯功能,我们只要将LED1~LED8依次点亮、熄灭,依始类推,8只LED变会一亮一暗的做流水灯了。
硬件定时器产生的周期性中断,中断频率就是系统频率(拍率)。系统拍率可以设置,单位是HZ,可在编译内核时通过图形化界面设置,设置路径如下:Kernel Features -> Timer frequency([=y])
延时函数,作为一种常用函数,在不同的领域有不同的用处。而在嵌入式以及C语言的编写中,我们常常遇到需要自己来编写延时函数的情况,这种情况之下,了解其原理就显得必要。
本实验联系静态按键识别,发光二极管驱动,以及外部中断的使用方法,实验原理图如下图1所示(注:图中元件编号中括号里面的内容表示该元件所在的板子名称,如CPU 表示该元器件位于CPU 板,以下类同)。
从小就对电器元件比较感兴趣吧,经常拿坏的电器里面的芯片拆下来玩,甚至那些没坏的电器,比如我家的电视,也会希望它能坏掉,我好去看看里面是什么样子的,为什么能播放节目……,所以我第一眼看到51单片机的时候,更多的是兴奋。
Systick(滴答时钟)是一个24位,向下计数的定时器,当倒计时完成后,定时器可以产生一个中断,所以,当频率一定,计数个数一定时,这个中断就会以一定的时间间隔发生,如果每个中断发送后调用的中断函数中给一个变量累加,这样我们就可以获得一个与时间相关的变量。有关于滴答时钟相关知识,官方手册和网上已经有非常多的篇幅介绍讲解,这里不再赘述。
本文将探讨嵌入式系统中的GPIO(通用输入输出)控制,着重介绍GPIO的原理和基本用法。我们将使用一个实际的示例项目来演示如何通过编程配置和控制GPIO引脚。将基于ARM Cortex-M微控制器,并使用C语言进行编写。
数码管(Segment Displays)由多个发光二极管封装在一起组成“8”字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。数码管实际上是由七个发光管(也称7段数码管)组成8字形构成的,加上小数点就是8个。
后台回复关键字“WS2812B”,获取WS2812B模块资料、数据手册及工程源码。
wx:key 是为了提高循环效率而出现了,给它的值,只要是循环元素中的唯一的标识符就可以了
数码管(Segment Displays)由多个发光二极管封装在一起组成“8”字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。数码管实际上是由七个发光管组成8字形构成的,加上小数点就是8个。这些段分别由字母a,b,c,d,e,f,g,dp来表示。
在Delphi中,通常可以用以下三种方法来实现程序的延时,即TTtimer控件,Sleep函数,GetTickCount函数。但是其精度是各不相同的。 一、三种方法的简单介绍 1)TTtimer控件 TTtimer控件的实质是调用Windows API定时函数SetTimer和KillTimer来实现的,并简化了对WM_TIMER 消息的处理过程。通过设置OnTimer事 件和Interval属性,我们可以很方便的产生一些简单的定时事件。 2)Sleep函数 Sleep函数用来使程序的执行延时给定的时间值。Sleep的调用形式为Sleep(milliseconds),暂停当前的进程milliseconds毫秒。Sleep的实现 方法其实也是调用Windows API的Sleep函数。例如: sleep(1000); //延迟1000毫秒 Sleep会引起程序停滞,如果你延迟的时间较长的话,你的程序将不能够响应延时期间的发生的其他消息,所以程序看起来好像暂时死机。 3)GetTickCount函数 在主程序中延时,为了达到延时和响应消息这两个目的,GetTickCount()构成的循环就是一种广为流传的方法。例如:
舵机控制原理:通过控制PWM来控制舵机转动的角度,关于PWM的知识可以去智能小车专栏进行学习,转动周期设置为20ms,控制高电平的时间来进行舵机转动的角度。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/158894.html原文链接:https://javaforall.cn
从通用计算的角度,操作系统是提供计算机基本功能的一组软件。操作系统保证了计算机硬件可以探测并响应外围器件(如键盘、屏幕、移动设备、打印机等),并管理内存空间和外部存储空间。
上一次我们说过,在裸机编程中,通过while(1)大循环来按顺序执行我们的程序,除了中断之外,后面的程序是不可能打断前面的程序来执行的。而在我们的uC/OS III操作系统中,各个任务是完全独立的,各个任务具有自己的优先级,通常按照优先级高低来依次执行,其他的暂时不多说。今天主要说一下任务的创建与管理,还有消息队列。
《Cortex-M3权威指南》中对SysTick的描述,SysTick定时器被捆绑在NVIC中,用于产生SYSTICK异常(异常号:15)。它是一个24位的递减定时器,当计数到 0 时,将从RELOAD 寄存器中自动重装载定时初值,开始新一轮计数。大多数操作系统需要一个硬件定时器来产生滴答中断,作为整个系统的时基。例如,为多个任务许以不同数目的时间片,确保没有一个任务霸占系统;或者把每个定时器周期的某个时间范围赐予特定的任务等,还有提供各种定时功能,都与滴答定时器有关。因此,需要一个定时器产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统的“心跳”的节奏。该定时器的时钟源可以是内部时钟(FCLK),或者是外部时钟(CM3处理器上的STCLK信号)。SysTick定时器能产生中断,异常中断。使用内核的SysTick定时器来实现延时,可以不占用系统定时器,由于和MCU外设无关,所以代码的移植,在不同厂家的Cortex-M内核MCU之间,可以很方便的实现。
**************************************************************
void delay(unsigned int xms) // xms代表需要延时的毫秒数
STM32F407ZGT6 是意法半导体(STMicroelectronics)公司推出的一款高性能ARM Cortex-M4核心的32位微控制器(MCU)。它是 STM32F4 系列的一员,具备强大的处理能力和丰富的外设功能,适用于各种应用领域。
在电子产品中经常用到按键,尤其是经常需要MCU判断短按和长按这两种动作,本篇我们来专门聊下这个话题。
领取专属 10元无门槛券
手把手带您无忧上云