这项工作提出一种新的逆映射方案,通过引入迭代细化机制,扩展当前基于编码器的逆映射方法。与当前最先进的方法相比,基于残差的编码器 ReStyle 提高了准确性,推理时间的增加可以忽略不计。https://yuval-alaluf.github.io/restyle-encoder/
单射的关系矩阵:每行有且仅有一个1,并且每列最多有一个1。 满射的关系矩阵:每行有且仅有一个1,并且每列至少有一个1。 双射的关系矩阵:每行有且仅有一个1,并且每列有且仅有一个1。
Image Processing Using Multi-Code GAN Prior
https://github.com/HaoruiSong622/Editing-Out-of-Domain
1.映射 为非空集合,如果存在法则 ,对 中每个元素 , 中有唯一元素 与之对应,则称 为从 到 的映射, 记作 , 称为 的像,并记作 ,即 , 称为 的原像。 为定义域,记作 , 为值域,记作 或 ,即 。 概念 定义 单射 , 如果, 则 满射 ,即至少存在一个与对应。 双射 既是单射,又是满射,则称为一一映射(双射)。 , 如果 , 则 满射 ,即至少存在一个 与 对应。双射既是单射,又是满射,则称 为一一映射(双射)。 注: :代
今天给大家介绍的是康奈尔大学医学院(Weill Cornell Medicine)健康科学系(Department of Population Health Sciences)的博士后研究助理臧承熙于2020年4月发表在ACM SIGKDD的一篇论文,这篇文章提出一种新的基于流的深度图生成模型MoFlow,用于分子图的生成,是同类的第一个不仅可以一次通过可逆映射有效地生成分子图,而且还具有化学有效性保证的流模型。
二十、风格迁移 61、 DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer 提出一种用于艺术风格迁移的动态 ResBlock 生成对抗网络(DRB-GAN)。风格码被建模为连接风格编码网络和迁移网络的动态 ResBlocks 的共享参数。 在编码网络中,融入了风格的类感知注意机制;在迁移网络中,多个 Dynamic ResBlocks 来整合风格码和提取的 CNN 语义特征,然后输入到
现在合成照片的真实感在某些程度上已经比真的还真,在这其中,GANs(生成性对抗网络)和变分自动编码器功不可没。
安妮 编译整理 量子位 出品 | 公众号 QbitAI 亚马逊想让AI读懂时尚。 继在Echo Look中加入穿搭指导功能引发大量吐槽后,目前,亚马逊又发表了两篇与时尚相关的研究。 洛杉矶亚马逊实验室
标准化流能把简单的地摊货概率密度(比如高斯分布)形式转换成某种高大上的分布形式。它可以用在产生式模型、强化学习、变分推断之类的地方。
1维直线、2维平面(长宽)、3维空间(长宽高 | xyz轴)、4维时空(xyz轴+时间轴)
这项工作提出一种新的“基于编辑”的方法,即属性组编辑(Attribute Group Editing,AGE),用于少样本图像生成。思路是任何图像都是属性的集合,并且特定属性的编辑方向在所有类别中共享。AGE 检查在 GAN 中学习的内部表示并识别语义上有意义的方向。
写在前面:文章里面的图片公式都是逆天一个个打出来画出来的,公式系列基本上都提供了源码
CycleGAN、pix2pix、iGAN的主要贡献者最近在NIPS 2017上又推出了一篇文章Toward Multimodal Image-to-Image Translation(见https://junyanz.github.io/BicycleGAN/,https://arxiv.org/pdf/1711.11586.pdf),讨论如何从一张图像同时转换为多张风格不一成对的图像。 从作者摘要第一句可以看出:“Many image-to-image translation problems are ambiguous, as a single input image may correspond to multiple possible outputs. In this work, we aim to model a distribution of possible outputs in a conditional generative modeling setting.” 像pix2pix这样的图像转换(一对一)的方式是存在歧义的,因为不可能只对应一个输出。因此作者提出了一种一对多的输出,即将可能输出的图像是存在一定的分布特性的。
萧箫 发自 凹非寺 量子位 | 公众号 QbitAI 2D图片“脑补”3D模型,这次真的只用一张图就行了—— 只需要给AI随便喂一张照片,它就能从不一样的角度给你生成“新视图”: 不仅能搞定360°的椅子和汽车,连人脸也玩出了新花样,从“死亡自拍”角度到仰视图都能生成: 更有意思的是,这只名叫Pix2NeRF的AI,连训练用的数据集都有点“与众不同”,可以在没有3D数据、多视角或相机参数的情况下学会生成新视角。 可以说是又把NeRF系列的AI们卷上了一个新高度。 用GAN+自动编码器学会“脑补” 在此之
State of the Art on Diffusion Models for Visual Computing
你有尝试从 BERT 提取编码后的 sentence embedding 吗?很多小伙伴的第一反应是:不就是直接取顶层的[CLS] token的embedding作为句子表示嘛,难道还有其他套路不成?
作者 | 李梅 编辑 | 陈彩娴 最近的生成式 AI 可谓十分火爆,新出的预训练图像生成模型多到让人目不暇接。无论是肖像、风景,还是卡通漫画、特定艺术家风格元素等等,每个模型都有它擅长生成的内容。 这么多模型里面,如何快速找到一个能满足自己创作欲的最佳模型呢? 近日,卡内基梅隆大学的助理教授朱俊彦等人首次提出了基于内容的模型搜索算法,让你能够一键搜索出最匹配的深度图像生成模型。 论文地址:https://arxiv.org/pdf/2210.03116.pdf 在团队基于这套模型搜索算开发的在线模型共享和
内容相似度损失(包括特征和像素相似度)是逼真和视频风格迁移中出现伪影的主要问题。本文提出了一个名为CAP-VSTNet的新框架,包括一个新的可逆残差网络(reversible residual network)和一个无偏线性变换模块,用于多功能风格转移。这个可逆残差网络不仅可以保留内容关联性,而且不像传统的可逆网络引入冗余信息,因此更有利于风格化处理。借助Matting Laplacian训练损失,可以处理线性变换引起的像素亲和力损失问题,因此提出的框架对多功能风格迁移是适用和有效的。广泛的实验显示,CAP-VSTNet相比于现有方法可以产生更好的定量和定性结果。
SeFa 方法能够识别出不同 GAN 模型的潜在语义,进而进行图像编辑。如下图所示:
作者 | 杜飞,川大计算机小硕,目前从事算法研究工作,对GAN的“魔法”情有独钟。
最近在研究和部署使用 LangChain + LLM(ChatGPT/ChatGLM) 构建企业专有知识库时,接触到两个 embedding (嵌入)模型:text2vec,m3e-base。
【导读】你一定记得非常热门的加州大学伯克利分校在CVPR2017上提出的图片翻译 pix2pix,它使用GAN方法可以将白马“转化”为斑马,可以把积木“转化”为建筑,可以把线条“转化”为猫咪、鞋子、挎包,可以把白天转化为黑夜。而最近伯克利AI研究实验室与Adobe公司朱俊彦等人提出新的BicycleGAN,解决pix2pix生成图像模式单一的问题,比如BicycleGAN可以跟你给出的一张鞋的草图在保持确定的前提下,生成出各式各样不同纹理风格的图像。 朱俊彦同时也是pix2pix的第二作者。 ▌视频 --
在 ChatGPT 引发的新一轮 AI 爆发之后,一部分研究者指出,大语言模型具备通过观察进行因果归纳的能力,但缺乏自己主动推理新的因果场景的能力。相比于持乐观预测的观点,这意味着 AGI 仍然是一个复杂而遥远的目标。
。通常假定初始状态为未变形状态,称为该连续体的初始构形(initial configurafions)或未变形构形。注意这是理想模型的概念,实际上很少存在未变形状态的物体。在当前时刻,由于各种因素作用引起该连续体发生了变形,并在空间有位置移动,其在欧氏空间中所占区域变为
CVPR2022论文和代码整理:https://github.com/DWCTOD/CVPR2022-Papers-with-Code-Demo
Variational Inference with Normalizing Flows
随着大规模语言模型(Large Language Models, LLMs)的广泛应用,隐私问题日益凸显。这些模型在训练过程中难免会记住并泄露敏感信息,如个人身份信息等。为此,反学习(Unlearning)方法旨在从模型中移除特定的信息或知识,作为针对上述问题的解决方案。
Adobe Research和英属哥伦比亚大学的研究人员发现,使用INVE(交互式神经视频编辑),只需在单帧上“画笔涂鸦”,就能自动应用改动到整个视频中。
哈希函数的输入和输出不是唯一对应关系的,如果两个哈希值相同,两个输入值很可能是相同的,但也可能不同。
;(2)噪声矢量z,它可以使得生成多样化并去学习一个分布而非一对一(重建)映射;(3)一组掩码
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 机器之心 授权 一文了解 StyleGAN 架构、方法和应用的最新进展。 GAN 生成高分辨率图像的能力正在彻底改变图像合成和处理领域。2019 年 Karras 等人提出 StyleGAN ,该技术走到了图像合成的最前沿,被公认为是最先进的高质量图像生成器。我们先来看下 StyleGAN 的合成效果: StyleGAN 不受监督,但它的潜在空间却表现的令人惊讶。事实证明,StyleGAN 性能非常好,甚至支持线性潜在算法。例如,它支持在一组潜在代码中
Short Weierstrass 椭圆曲线:F 是特征 q > 3 的有限域,a, b ∈ F,且 4a^3 + 27b^2 \ne 0 ,所有点 (x, y) ∈ F x F 满足方程 y^2 = x^3 + ax + b 所组成的集合,还有额外的一个点 O,称为无穷点:
近期,神经场(Neural Fields)领域的巨大进展,已经显著推动了神经场景表示和神经渲染的发展。为了提高3D场景的计算效率和渲染质量,一个常见的范式是将3D坐标系统映射到另一种测量系统,例如2D流形和哈希表,以建模神经场。
Hash,一般翻译做散列,也有直接音译为哈希,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。
本文介绍百度公司Zhiyuan Chen,Xiaomin Fang等人的研究成果:在寻找满足各种性质要求的分子时,由于无法搜索整个化学空间,近年来的研究都采用目标定向分子生成模型,倾向于利用迭代过程优化分子生成模型的参数。然而,大多数工作需要大量昂贵和耗时的评估过程,为了减少迭代过程中的评估,本文作者提出了一种具有成本效益的潜在空间进化策略——Cost-efficient evolution in latent space(CELLS),优化分子的潜在表示向量,采用一个预训练的分子生成模型来映射潜在和观察空间,利用大规模的未标记分子学习化学知识。为了进一步减少评估的数量,作者引入了一个预筛选器作为评估的代理。经过多个优化任务上的大量实验,所提出的框架在较少的评估下获得了更好的性能。
异常是数据中不符合正常行为的定义(Chandola et al., 2009)的模式。
JoJoGAN: One Shot Face Stylization. 只用一张人脸图片,就能学习其风格,然后迁移到其他图片。训练时长只用 1~2 min 即可。
机器之心报道 机器之心编辑部 一文了解 StyleGAN 架构、方法和应用的最新进展。 GAN 生成高分辨率图像的能力正在彻底改变图像合成和处理领域。2019 年 Karras 等人提出 StyleGAN ,该技术走到了图像合成的最前沿,被公认为是最先进的高质量图像生成器。我们先来看下 StyleGAN 的合成效果: StyleGAN 不受监督,但它的潜在空间却表现的令人惊讶。事实证明,StyleGAN 性能非常好,甚至支持线性潜在算法。例如,它支持在一组潜在代码中添加一个表示年龄的向量,使图像中人物年龄
背景介绍 近两年来,随着视频技术的快速发展,多种视频的新型载体孕育而生。VR视频,也称作是360视频,是一种新一代的视频显示技术。用户置于球形区域的中央,可以任意地选择观看周围360度的视频场景,而不受空间和时间的限制,有着沉浸式的感觉。下图为全景视频的流程图,全景视频是由两个鱼眼相机或多个广角相机进行拍摄后,根据各个相机视频之间的重叠部分拼接在一起而形成的一个360度的视频。在此过程中,一个全景场景可以用一个球面上图案来描述。但在编码传输或存储之前,需要将这个球面视频投影映射到二维平面上。然后再经过解码
Benchmarking and Analyzing Generative Data for Visual Recognition
⚡ Model-Based Image Signal Processors via Learnable Dictionaries
Flow-based Generative Models for Learning Manifold to Manifold Mappings
从上图可以看出,每一行语料有三列,第一列表示这个句子的ID,第二列是句子,第三列是第二列句子的规范形式。具体来说,第二列句子中有可能会出现阿拉伯数字等一些特殊字符,那么第三列就会将这些字符转换成英文读音(例如将1455改写为fourteen fifty-five)
通过学习从低分辨率(LR)图像到高分辨率(HR)图像之间的非线性映射函数,深度神经网络在图像超分辨率(SR)任务上取得了较好的性能。
领取专属 10元无门槛券
手把手带您无忧上云