最近使用 WebRTC 开发一个实时直播项目,在调试的时候发现一个特别奇怪的现象,将编译好的 WebRTC 静态库文件加入到我们自己的工程里之后无法进行单步调试。每次调到 WebRtc 里都会变成汇编语言,如果如下:
/proc/kallsyms会显示内核中所有的符号,但是这些符号不是都能被其他模块引用的(绝大多数都不能),能被导出的是符号的类型是大写的那些(例如T,U)。
作者简介: 伟林,中年码农,从事过电信、手机、安全、芯片等行业,目前依旧从事Linux方向开发工作,个人爱好Linux相关知识分享。 原理概述 为什么要研究链接和加载?写一个小的main函数用户态程序,或者是一个小的内核态驱动ko,都非常简单。但是这一切都是在gcc和linux内核的封装之上,你只是实现了别人提供的一个接口,至于程序怎样启动、怎样运行、怎样实现这些机制你都一无所知。接着你会对程序出现的一些异常情况束手无策,对内核代码中的一些用法不能理解,对makefile中的一些实现不知所云。所以这就是我们
在Linux中,可执行文件的格式是ELF格式,而有一些命令可以帮助我们了解它们更多的“秘密”,以此来帮助我们解决问题。
为什么什么C语言不支持函数重载呢?这个需要和编译原理上来进行分析在我们对源文件进行编译的时候是需要进行
我们知道动态链接器本身也是一个共享对象,但是事实上它有一些特殊性。对于普通共享对象文件来说,它的重定位工作由动态链接器来完成。他也可以依赖其他共享对象,其中的被依赖共享对象由动态链接器负责链接和装载。可是对于动态链接器来说,它的重定位工作由谁来完成?它是否可以依赖于其他共享对象?
在了解了共享对象的绝对地址的引用问题后,我们基本上对动态链接的原理有了初步的了解,接下来的问题是整个动态链接具体的实现过程了。动态链接在不同的系统上有不同的实现方式。ELF的动态链接的实现方式会比PE的简单一点,在这里我们先介绍ELF的动态链接过程在LINUX下的实现,最后我们会专门的章节中介绍PE在Windows下的动态链接过程和它们的区别
我们知道Java崩溃是在Java代码中出现了未捕获异常,导致程序异常退出,常见的异常有:NPE、OOM、ArrayIndexOutOfBoundsException、IllegalStateException、ConcurrentModificationException等等。 还有一类崩溃,也是我们不得不关注,那就是Native层崩溃,这类崩溃不像Java层崩溃那样比较清晰的看出堆栈信息以及具体的崩溃。每当遇到是都要查找分析,写这篇的目的是帮助自己做下记录,也希望能帮到有类似困扰的你,下面我们开始一起学习实践吧。 本文学习实践的demo以张绍文《Android开发高手课》中的例子进行。
在 Mac 系统的终端上修改文件权限使用的是 Linux 中的 chmod 命令。 chmod 用户+操作+权限+文件 用户部分:使用字母 u 表示文件拥有者(user),g 表示拥有者所在群组(group),o 表示其他用户(other),a 表示全部用户(all,包含前面三种用户范围) 操作部分:“+” 符号表示增加权限,“-” 符号表示取消权限,“=” 符号表示赋值权限 权限部分:“r” 符号表示可读(read),“w” 表示可写(write),“x” 表示可执行权限(execute) 文件部分:如不
建议关闭地址随机化,否则会出现gdb中无法在断点处停下来的情况(尤其是qemu中)。可以参考:https://blog.csdn.net/gatieme/article/details/104266966
理解链接器将帮助你构造大型程序。构造大型程序的程序员经常会遇到由于缺少模块、缺少库或者不兼容的库版本引起的链接器错误。除非你理解链接器是如何解析引用、什么是库以及链接器是如何使用库来解析引用的,否则这类错误将令你感到迷惑和挫败。
这里,你现在可以知道System.map文件是干什么用的了。 每当你编译一个新内核时,各种符号名的地址定会变化。 /proc/ksyms 是一个 "proc文件" 并且是在内核启动时创建的。实际上 它不是一个真实的文件;它只是内核数据的简单表示形式,呈现出象一个磁盘文件似 的。如果你不相信我,那么就试试找出/proc/ksyms的文件大小来。因此, 对于当前运行的内核来说,它总是正确的.. 然而,System.map却是文件系统上的一个真实文件。当你编译一个新内核时,你原 来的System.map中的符号信息就不正确了。随着每次内核的编译,就会产生一个新的 System.map文件,并且需要用该文件取代原来的文件。
拿到一个编译好的可执行文件,你能获取到哪些信息?文件大小,修改时间?文件类型?除此之外呢?实际上它包含了很多信息,这些你都知道吗?
我们平时在编译器上编写代码,然后运行代码,最后得到程序的运行结果。这让我们不经好奇:程序在电脑中到底经过了什么样的变化,使得它最终生成了我们想要得到的结果,因此今天就来了解一下程序的环境
既然程序最终都被变成了一条条机器码去执行,那为什么同一个程序,在同一台计算机上,在Linux下可以运行,而在Windows下却不行呢?
最近因为项目上的需要,利用动态链接库来实现一个插件系统,顺便就复习了一下关于Linux中一些编译、链接相关的内容。
书接上文,我们已经学习了 Linux 中的编辑器 vim 的相关使用方法,现在已经能直接在 Linux 中编写C/C++代码,有了代码之后就要尝试去编译并运行它,此时就可以学习一下 Linux 中的编译器 gcc/g++ 了,我们一般使用 gcc 编译C语言,g++ 编译C++(当然 g++ 也可编译C语言),这两个编译器我们可以当作一个来学习,因为它们的命令选项都是通用的,只是编译对象不同。除了编译器相关介绍外,本文还会库、自动化构建工具、提权等知识,一起来看看吧
现在我们知道了程序的编译链接是在翻译环境中进行的,接下来我们来探讨程序编译链接的具体过程。首先,我们来探讨编译,编译其实分为三个阶段,分别是:预处理(预编译)、编译、汇编。这三个阶段所执行的具体操作如下。
目标文件是源代码编译但未链接的中间文件(Windows的.obj和Linux的.o),Windows的.obj采用 PE 格式,Linux 采用 ELF 格式,两种格式均是基于通用目标文件格式(COFF,Common Object File Format)变化而来,所以二者大致相同。本文以 Linux 的 ELF 格式的目标文件为例,进行介绍。
ld命令是二进制工具集GNU Binutils的一员,是GNU链接器,用于将目标文件与库链接为可执行程序或库文件。
1999年86open项目选择ELF作为x86处理器上Unix和类Unix系统的标准二进制文件格式。使用ELF的原因包括:灵活性、可扩展性、对不同字节序格式支持、跨平台支持地址size。
objdump命令是Linux下的反汇编目标文件或者可执行文件的命令,它以一种可阅读的格式让你更多地了解二进制文件可能带有的附加信息。
ELF文件装载链接过程及hook原理 ELF文件格式解析 可执行和可链接格式(Executable and Linkable Format,缩写为ELF),常被称为ELF格式,在计算机科学中,是一种用于执行档、目的档、共享库和核心转储的标准文件格式。 ELF文件主要有四种类型: 可重定位文件(Relocatable File) 包含适合于与其他目标文件链接来创建可执行文件或者共享目标文件的代码和数据。 可执行文件(Executable File) 包含适合于执行的一个程序,此文件规定了 exec() 如何创
本小节,我们学习翻译环境和运行环境,其中我们将学习编译环境的4个阶段:预编译,编译(词法分析,语法分析,语义分析),汇编,链接,文章干货满满!学习起来吧😃!
链接器主要完成符号解析和重定位两个任务。 目标文件有三种形式:可重定位目标文件(.so);可执行目标文件(.exe),共享目标文件(.so)。 linux x86-64 的可重定位目标文件使用 ELF 格式。ELF 头的前 16 字节描述文件对应系统的字的大小和字节顺序,后面还有头的大小,目标文件类型,机汽类型,各 section header 的文件偏移,以及它们的大小和数量。 一般 ELF 包含以下几种 section: .text:可执行机器码 .rodata:只读数据,如字符串
我相信大家都有过这样的经历,在面试过程中,考官通常会给你一道题目,然后问你某个变量存储在什么地方,在内存中是如何存储的等等一系列问题。不仅仅是在面试中,学校里面的考试也会碰到同样的问题。
该方法的主要原理是利用dl_runtime_resolve函数来对动态链接的函数进行重定位。
1, 编译器编译源代码生成的文件叫做目标文件。 从结构上说,是编译后的可执行文件,只不过还没有经过链接 3.1 目标文件的格式 1,可执行文件的格式: Windows下的PE 和 Linux下的ELF 2,从广义上说,目标文件与可执行文件的格式几乎是一样的,所以广义上可以将目标文件与可执行文件看成是一种类型的文件。 3,可执行文件,动态链接库,静态链接库都按照可执行文件格式存储(Windows下是 PE-COFF格式,Linux下是ELF格式)。 4,Linux下命令: $: file ***
今天我们要来探究的内容是一个或者多个源文件(.c)是如何变成一个可执行程序(.exe)的,博主将在Linux环境gcc编译器中进行分步演示,让你深入理解程序环境。
原文:http://xcd.blog.techweb.com.cn/archives/222.html
在上一篇文章中,我们一起学习了Linux系统中 GCC编译器在编译可执行程序时,静态链接过程中是如何进行符号重定位的。
静态链接是在链接阶段将程序各模块文件链接成一个完整的可执行文件,运行时作为整体一次性加载进内存。动态加载允许用户将程序各模块编译成独立的文件而不将它们链接起来,在需要使用到模块时再动态地将其加载到内存中。
ELF(Executable and Linkable Format)是一种可执行文件和可链接文件的标准格式,用于在Linux和Unix系统中存储程序和库文件。它是一种二进制文件格式,包含程序的代码、数据、符号表、段表等信息。
程序员编写的是源代码,而计算机运行的则是CPU能识别的机器指令,因此必须要有一系列工具或程序来将源代码转化为机器指令,这个转化的过程需要经历编译和链接两个主要阶段。所谓编译就是将源代码文件转化为中间的目标文件(Object file)。目标文件的后缀一般为.o。iOS系统的目标文件也是一种mach-o格式的文件,mach-o文件的头部结构体:struct mach_header中的filetype成员字段用来描述当前文件的类型,目标文件所对应的类型是MH_OBJECT。目标文件中的布局结构和内容和可执行文件中的布局结构和内容非常相似,编译后形成的目标文件中的代码段(__TEXT Segment)中的节(__text Section) 中的内容存放的是已经被编译为机器指令的二进制代码了。下面就是一个目标文件的布局结构:
在ANSI C(美国国家标准协会(ANSI)及国际标准化组织(ISO)推出的关于C语言的标准)的任何一种实现中,程序都存在两个不同的环境。
在Linux操作系统中,一段C程序从被写下到最终被CPU执行,要经过一段漫长而又复杂的过程。下图展示了这个过程
总第513篇 2022年 第030篇 减小应用安装包的体积,对提升用户体验和下载转化率都大有益处。本文将结合美团平台的实践经验,分享 so 体积优化的思路、收益,以及工程实践中的注意事项。本文将先从 so 文件格式讲起,结合文件格式分析哪些内容可以优化,然后再具体讲解每项优化手段以及注意事项,最后介绍相关的工程实践经验。希望能对从事包体积优化的同学有所帮助或启发。 1. 背景 2. so 文件格式分析 3. so 可优化内容分析 4. 优化方案介绍 4.1 精简动态符号表 4.2 移除无用代码 4.3 优
在C语言 程序员内功心法之程序环境和预处理 博文中,我们就学习到 – 一个程序要被运行起来需要经历四个阶段:预处理 (预编译)、编译、汇编、链接,下面我们来简单回顾一下这四个阶段会进行的操作。
58 同城主 APP 的单架构的 bugly 符号表已经达到了 53MB(解压后 550MB+)。
本文适用于CentOS 6.4, CentOS 6.5,估计也适用于其他Linux发行版。
Native Crash常常发生在带有Jni代码的APP中,或者系统的Native服务中。作为比较难分析的一类问题,Native Crash其实还是有较多的方法去定位。
可执行与可链接格式 (Executable and Linkable Format,ELF),常被称为 ELF格式,是一种用于可执行文件、目标代码、共享库和核心转储(core dump)的标准文件格式,一般用于类Unix系统,比如Linux,Macox等。ELF 格式灵活性高、可扩展,并且跨平台。比如它支持不同的字节序和地址范围,所以它不会不兼容某一特别的 CPU 或指令架构。这也使得 ELF 格式能够被运行于众多不同平台的各种操作系统所广泛采纳。 ELF文件一般由三种类型的文件:
掐指一算,没想到已经三个月没有更新了,看了一下后台,发现关注的人数到时又多了。感谢大家的关注。而且是持续的关注。
可执行文件的符号表(symbol table)记录了某个可执行文件中的函数名、全局变量、宏定义等符号信息,这些信息对于我们调试十分重要。
内核模块是Linux操作系统中一个比较独特的机制。通过这一章学习,希望能够理解Linux提出内核模块这个机制的意义;理解并掌握Linux实现内核模块机制的基本技术路线;运用Linux提供的工具和命令,掌握操作内核模块的方法。
vma是指的不同段的地址入口,可以看到虽然段有很多,但是type类型大部分都一样,比如代码段类型分为了两个段描述更加细致;数据段更夸张用了五个段存储初始化了的变量
编译与链接的过程可以分解为4个步骤:分别是预处理(Prepressing )、编译(Compilation )、汇编(Assembly )和链接(Linking ),一个helloworld的编译过程如下:
从3月中旬到前几天,我的工作重心一直在符号还原服务的重构上;整个重构从提案、方案设计,到难点攻关、核心功能实现,最后到功能验证,性能优化以及搭建监控和压力测试。全程的体验可以说是历尽艰险,但也成就感满满
depmod命令可产生模块依赖的映射文件,用于构建嵌入式系统。这些生成的文件将被modprobe命令使用。
今天我们正式开始C++语言的学习,和C语言一样,我们与C++的第一缕羁绊从打印 “hello world” 开始:
领取专属 10元无门槛券
手把手带您无忧上云