首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【最强ResNet改进系列】IResNet:涨点不涨计算量,可训练网络超过3000层!

    【导读】本篇文章是【最强ResNet改进系列】的第四篇文章,前面我们已经介绍了Res2Net和ResNeSt,具体见:【最强ResNet改进系列】Res2Net:一种新的多尺度网络结构,性能提升显著 和【CV中的注意力机制】史上最强"ResNet"变体--ResNeSt。本文我们将着重讲解IResNet,阿联酋起源人工智能研究院(IIAI)的研究人员,进一步深入研究了残差网络不能更深的原因,提出了改进版的残差网络(Improved Residual Networks for Image and Video Recognition),IResNet可训练网络超过3000层!相同深度但精度更高,与此同时,IResNet还能达到涨点不涨计算量的效果,在多个计算机视觉任务(图像分类,COCO目标检测,视频动作识别)中精度得到了显著提升。

    02
    领券