调用栈描述的是函数之间的调用关系。调用栈由栈帧(Stack Frame)组成,每个栈帧对应着一个未运行完的函数。在GDB中可以用backtrace(简称bt)命令打印所有栈帧信息。若要用p命令打印一个非当前栈帧的局部变量,可以用frame命令选择另一个栈帧
近期技术人员从宇视官网下载sdk进行二次开发时,在启动实时直播,并通过回调函数拿到流数据,发现没有音频流数据。
EasyPlayer是可支持H.264/H.265视频播放的流媒体播放器,性能稳定、播放流畅,可支持的视频流格式有RTSP、RTMP、HLS、FLV、WebRTC等,具备较高的可用性。EasyPlayer还拥有Windows、Android、iOS版本,其灵活的视频能力,极大满足了用户的多样化场景需求。
CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。
FPS(帧率)是图像领域中的定义,是指画面每秒渲染帧数,FPS 一般在 0-60 之间,低于 30 时人眼能明显感觉到卡顿。页面交互过程中页面展示是否流畅,页面中的动画是否存在卡顿等,都需要通过 FPS 的统计指标作为页面性能的参考依据。
本文副标题是 Request Schedule 源码解析一。在本章中会介绍 requestIdleCallback 的用法以及其缺陷, 接着对 React 团队对该 api 的 hack 部分的源码进行剖析。在下一篇中会结合优先级对 React 的调度算法进行宏观的解释, 欢迎关注个人博客。
上图概括了unity如何在脚本的生命周期内对事件函数进行排序以及重复执行这些事件函数。
其实这个聊天室的DEMO我早都发到Github上了,之前学习Swoole的时候就已经练过手了
Video for Linux two(Video4Linux2)简称V4L2,是V4L的改进版。V4L2是linux操作系统下一套用于采集图片、视频和音频数据的通用API接口,配合适当的视频采集设备和相应的驱动程序,可以实现图片、视频、音频等的采集。V4L2像一个优秀的快递员,将视频采集设备的图像数据安全、高效的传递给不同需求的用户。
好多初学者可能对程序在内存中如何布局都有疑问,在我们和用户的沟通过程中也发现有好多同学问相关的问题。这里转一个文章,讲得很不错的,大家可以看一下。 栈主要用来存放局部变量, 传递参数, 存放函数的返回地址.esp 始终指向栈顶, 栈中的数据越多, esp的值越小. 堆用于存放动态分配的对象, 当你使用 malloc , new 等进行分配时,所得到的空间就在堆中. 动态分配得到的内存附带有分配信息, 所以你能够 realloc 和 free调它们. 全局,静态和常量是分配在数据区中的。数据区包括bs
早期 JS 定时动画:主要通过 setTimeout 和 setIntarval 实现。 HTML5 出现后:又出现了两种实现动画的方式,1. CSS 动画(transition、animation)2. H5的 canvas 实现。 与此同时,HTML5 还提供了一个专门用于请求动画的 API requesetAniamtionFrame(),统一了 DOM 动画、canvas动画、svg动画、webGL动画等的刷新机制。
FreeRTOS 上的网络,驱动部分源码没有开源,用户实际使用时也无需关系具体实现,更多的是做网络管理的逻辑接口开发,所以我们提供了网络中间件 Wi-Fi Manager,Wi-Fi Manager 支持sta, ap, monitor 等多种网络工作模式的管理,本文档重点介绍 Wi-Fi Manager 中间件的使用,配置,框架,接口。
调用setState时, 会调用classComponentUpdater的enqueueSetState方法, 同时将新的state作为payload参数传进
我们在提出开发跨平台组件之前, iOS 和 Android 客户端分别使用一套长连接组件,需要双倍的人力开发和维护;在产品需求调整上,为了在实现细节上保持一致性也具有一定的难度;Web 端与客户端长连接的形式不同,前者使用 WebSocket ,后者使用 Socket ,无形中也增加了后端的维护成本。为了解决这些问题,我们基于 WebSocket 协议开发了一套跨平台的长连接组件。
JavaScript 的并发模型基于“事件循环”。这个模型与像 C 或者 Java 这种其它语言中的模型截然不同。
直播回放:https://www.livevideostack.cn/video/online-piasy/
一、Promise并非完美 我在上一话中介绍了Promise,这种模式增强了事件订阅机制,很好地解决了控制反转带来的信任问题、硬编码回调执行顺序造成的“回调金字塔”问题,无疑大大提高了前端开发体验。但有了Promise就能完美地解决异步问题了吗?并没有。 首先,Promise仍然需要通过then方法注册回调,虽然只有一层,但沿着Promise链一长串写下来,还是有些让人头晕。 更大的问题在于Promise的错误处理比较麻烦,因为Promise链中抛出的错误会一直传到链尾,但在链尾捕获的错误却不一定清楚来源。而且,链中抛出的错误会fail掉后面的整个Promise链,如果要在链中及时捕获并处理错误,就需要给每个Promise注册一个错误处理回调。噢,又是一堆回调! 那么最理想的异步写法是怎样的呢?像同步语句那样直观地按顺序执行,却又不会阻塞主线程,最好还能用try-catch直接捕捉抛出的错误。也就是说,“化异步为同步”! 痴心妄想? 我在第一话里提到,异步和同步之间的鸿沟在于:同步语句的执行时机是“现在”,而异步语句的执行时机在“未来”。为了填平鸿沟,如果一个异步操作要写成同步的形式,那么同步代码就必须有“等待”的能力,等到“未来”变成“现在”的那一刻,再继续执行后面的语句。 在不阻塞主线程的前提下,这可能吗? 听起来不太可能。幸好,Generator(生成器)为JS带来了这种超能力! 二、“暂停/继续”魔法 ES6引入的新特性中,Generator可能是其中最强大也最难理解的之一,即使看了阮一峰老师列举的大量示例代码,知道了它的全部API,也仍是不得要领,这是因为Generator的行为方式突破了我们所熟知的JS运行规则。可一旦掌握了它,它就能赋予我们巨大的能量,极大地提升代码质量、开发效率,以及FEer的幸福指数。 我们先来简单回顾一下,ES6之前的JS运行规则是怎样的呢? 1. JS是单线程执行,只有一个主线程 2. 宿主环境提供了一个事件队列,随着事件被触发,相应的回调函数被放入队列,排队等待执行 3. 函数内的代码从上到下顺序执行;如果遇到函数调用,就先进入被调用的函数执行,待其返回后,用返回值替代函数调用语句,然后继续顺序执行 对于一个FEer来说,日常开发中理解到这个程度已经够用了,直到他尝试使用Generator……
Javascript 是一种奇怪语言,有些人喜欢它,有些人讨厌它。它有许多独特的机制,这些机制在其他流行语言中不存在,也没有对应的机制,还有突出明显的就是代码的执行顺序
CAN通讯是车辆底盘域的主要通信方式,1986年由博世开发,CAN控制器根据双绞线上的电位差来判断总线电平(显性/隐性),通过电平的变化,实现消息(报文)的发送。
经常我们会在流媒体推送端提到“数据回调”这个词,在多媒体编程中,我们会比较常用到线程数据回调,在SkeyeClient管理类代码中用到了两个数据回调函数,分别是DShow原始音视频数据采集回调函数和SkeyeRTSPClient网络接收线程中回调音视频编码数据回调函数;虽然两者采集到的数据不同,但是我们的用途是一致的,都是用来推送,所以我们通常会用一个数据回调管理函数来进行统一管理。
这道题,我相信很多前端从业者都知道,它本质上来说并不复杂,但是却可以有很深远的扩展,最终核心的主题其实就是异步的执行,其中对于题目的解法,还涉及到一些作用域的知识。那么我们以最简版的题目入手,逐步深入,一点点的剖开这道题所涉及到的知识概念和体系。
前面几篇文章介绍了Flutter框架的渲染流水线,window,初始化以及Widget,Element和RenderObject体系。其中对Widget,Element和RenderObject的介绍主要是一些静态的说明,了解了以上这些技术点之后,在这篇文章里我们会通过动态运行的方式来介绍一下Flutter框架是如何运行的。 从之前介绍的渲染流水线可以知道,这个过程大致可以分为两段操作。第一段是从State.setState()到去engine那里请求一帧,第二段就是Vsync信号到来以后渲染流水线开始重建新的一帧最后送入engine去显示。我们先来看第一段Flutter框架都做了什么。
requestIdleCallback 是一个还在实验中的 api,可以让我们在浏览器空闲的时候做一些事情
最初我以为这个函数就是和实现动画的 requestAnimationFrame 拥有相同的行为,因为它们的使用方法非常类似,但实际使用后发现它们的差别还是蛮大的。本文主要对这个神秘的函数进行一些说明和分析。
前面已经讲到如何在Linux环境下编译FFmpeg以及在Android项目中使用,这一节就开始真正的使用FFmpeg。在Android平台下用FFmepg解析视频文件并进行RTMP推流。如果对FFmpeg基础不熟或者不知道如何在Android项目中使用,请先阅读流媒体专栏里之前的文章。 注意:这里的工程沿用Linux下FFmpeg编译以及Android平台下使用里的工程和结构。
1 . AAudio 音频流的 采样 缓冲 播放 流程 : 样本采样完成后 , 存入缓冲区 , 然后将其通过 AAudio 播放出来 , 采样阶段采集
接触过网络开发的人,大抵都知道,上层应用使用send函数发送数据,使用recv来接收数据,而send和recv的实现原理又是怎样的呢?
本章节为大家讲解高效的事件触发框架实现方法,BSD Socket编程和后面章节要讲解到的FTP、TFTP和HTTP等都非常适合使用这种方式。实际项目中也推荐大家采用这种方式,不过仅适用于RTOS环境,比如RTX、FreeRTOS或者uCOS-III均可,裸机方式不支持。
自从快直播传输层SDK发布以来,越来越多的客户通过快直播传输层SDK libLebConnection接入,其接入便捷性受到客户的肯定。libLebConnection和相应的WebRTC Demuxer实现了多个版本的迭代优化,主要有下面4点: 追求极致性能,提升首帧、开播成功率和卡顿等QoS指标。 提升SDK的易用性、稳定性和完备性。 打磨瘦身,SDK体积减少30%,实现ARM64打包增量不超过500K。 实现Android、iOS、Windows、Linux和Mac全终端平台覆盖。 前面我们已
我们在对接RTSP、RTMP推拉流播放的时候,开发者提到这样的技术诉求,他们在用于安检等场景的时候,采集分辨率甚至需要4K+,帧率需要达到50帧以上,码率也非常高,这就对推流和播放模块,提出了更高的要求。
最新教程下载:http://www.armbbs.cn/forum.php?mod=viewthread&tid=98429 第29章 ThreadX GUIX的摄像头OV7670动态图像
这几年,我们对接了太多有RTSP或RTMP直播播放器诉求的开发者,他们当中除了寻求完整的解决方案的,还有些是技术探讨,希望能借鉴我们播放端的开发思路或功能特性,完善自己的产品。
今天,我想谈谈最近一个叫做 WebCodecs API 的API。特别是当在 web 平台上与其他 API 一起使用此 API 时的内存访问模式。我们将讨论访问视频帧时的一些原始性能数据,WebCodes 目前为最小化内存、访问开销所做的工作,以及 API 目前存在的一些问题,其中有一个解决方案,但尚未实现。更重要的是,我们将在未来解决两个更难的问题,这样使用 WebCodec 将具有与本地应用相同的性能。
大牛直播SDK跨平台RTMP直播推送模块,始于2015年,支持Windows、Linux(x64_64架构|aarch64)、Android、iOS平台,支持采集推送摄像头、屏幕、麦克风、扬声器、编码前、编码后数据对接,功能强大,性能优异,配合大牛直播SDK的SmartPlayer播放器,轻松实现毫秒级的延迟体验,满足大多数行业的使用场景。
在 【Android 高性能音频】Oboe 开发流程 ( 导入 Oboe 库 | 使用预构建的二进制库和头文件 | 编译 Oboe 源码 ) 博客中介绍了 如何导入 Oboe 函数库到项目中 , 本博客中在导入 Oboe 函数库的基础上 , 进行 Oboe 播放器功能开发 ;
了解我们产品的小伙伴都知道,Easy系列产品包含前端推拉流组件、流媒体服务器以及中间件产品,从取流到播放全包含,其中播放器类产品有EasyPlayer-RTSP、EasyPlayer-RTMP、EasyPlayerPro。其可以单独使用,也可以封装到其他组件中。
JavaScript从诞生之日起就是一门单线程的非阻塞的脚本语言。这是由其最初的用途来决定的:与浏览器交互。
首先,栈 (stack) 是一种串列形式的 数据结构。这种数据结构的特点是 后入先出 (LIFO, Last In First Out),数据只能在串列的一端 (称为:栈顶 top) 进行 推入 (push) 和 弹出 (pop) 操作。根据栈的特点,很容易的想到可以利用数组,来实现这种数据结构。但是本文要讨论的并不是软件层面的栈,而是硬件层面的栈。
ThreadStackSpoofer是一种先进的内存规避技术,它可以帮助广大研究人员或红/蓝队人员更好地隐藏已注入的Shellcode的内存分配行为,以避免被扫描程序或分析工具所检测到。
当客户端想和服务端建立 TCP 连接的时候,首先第一个发的就是 SYN 报文,然后进入到 SYN_SENT 状态。
首先,栈 (stack) 是一种串列形式的数据结构。这种数据结构的特点是后入先出 (LIFO, Last In First Out),数据只能在串列的一端 (称为:栈顶 top) 进行 推入 (push) 和 弹出 (pop) 操作。根据栈的特点,很容易的想到可以利用数组,来实现这种数据结构。但是本文要讨论的并不是软件层面的栈,而是硬件层面的栈。
在这个现代世界中,我认为我们大多数人都熟悉使用计算机视觉应用程序的新行业,特别是闭路电视监控摄像头和视频分析,它们在计算机视觉技术中发挥着重要作用。
linux下设备驱动都有一套标准的结构,字符设备,块设备,网络设备都是自己的一套框架。编写驱动只需要把内核的框架搞清楚,然后照着结构填入参数,注册进内核,在应用层就可以按照标准的形式调用了。 对于网络设备而言,主要目的就是网络数据的收发,编写驱动时将linux网络设备驱动里的接口与实际网卡硬件的操作接口对应上,应用层就可以操作网卡完成网络通信了。底层驱动里编写网卡驱动与单片机一样。
Android使用的绘制引擎是Skia,而App中的动画、2D绘制、SVG矢量图都是通过该绘制引擎进行绘制,并且通过显卡输出到渲染的Buffer中,用户才能看到绘制的图形。
在 iOS下WebRTC视频采集 一文中,向大家介绍了 WebRTC 是如何在 iOS下进行视频采集的。本文则介绍一下 iOS 下 WebRTC 是如何进行视频编码的。
计算机如何执行进程呢?这是计算机运行的核心问题。即使已经编写好程序,但程序是死的。只有活的进程才能产出。我们已经从Linux进程基础中了解了进程。现在我们看一下从程序到进程的漫漫征程。 一段程序 下面是一个简单的C程序,假设该程序已经编译好,生成可执行文件vamei.exe。 #include <stdio.h> int glob=0; /*global variable*/ void main(void) {
EasyNVR作为一款稳定的流媒体服务平台,已经在很多场景得到了应用,比如智慧城市、智慧校园等方面,很多场景都会有几百路甚至几千路的摄像头接入,因此我们也需要对这些高接入量的场景进行测试。
领取专属 10元无门槛券
手把手带您无忧上云