通用操作系统,通常都会开启mmu来支持虚拟内存管理,而页表管理是在虚拟内存管理中尤为重要,本文主要以回答几个页表管理中关键性问题来解析Linux内核页表管理,看一看页表管理中那些鲜为人知的秘密。
本文旨在深入探讨Linux操作系统的虚拟内存管理机制。我们将从基本概念开始,逐步深入到内核级别的实现细节。为了达到这个目标,本文将结合理论讨论和实际的代码分析。我们希望通过这种方式,使读者对Linux虚拟内存管理有更深入的理解。
在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address).
Linux 内核修复办法:内核页表隔离KPTl(kernel page table isolation)
作者:Cheetah老师一直从业于半导体行业,他曾为U-boot社区和Linux内核社区提交过若干补丁。目前主要从事Linux相关系统软件开发工作,负责Soc芯片BringUp及系统软件开发,喜欢阅读内核源代码,在不断的学习和工作中深入理解内存管理,进程调度,文件系统,设备驱动等内核子系统。
大家在看内核代码时会经常看的以上术语,但在ARM的芯片手册中并没有用到这些术语,而是使用L1,L2,L3页表这种术语。
常见的内存分配函数有malloc,mmap等,但大家有没有想过,这些函数在内核中是怎么实现的?换句话说,Linux内核的内存管理是怎么实现的?
只针对32位的操作系统,设计一个二级页表,目的是构建一个简易的能跑起来的操作系统。对于4G的地址空间,每个页大小是4K,模仿Linux早期的做法,32位地址的前10位为页目录项,中间10位为页表,后面10位为偏移量。
操作系统确实是比较难啃的一门课,至少我认为比计算机网络难太多了,但它的重要性就不用我多说了。
在32bit中的Linux内核中一般采用3层映射模型,第1层是页面目录(PGD),第2层是页面中间目录(PMD),第3层才是页面映射表(PTE)。但在ARM32系统中只用到两层映射,因此在实际代码中就要3层映射模型中合并一层。在ARM32架构中,可以按段(section)来映射,这时采用单层映射模式。使用页面映射需要两层映射结构,页面的选择可以是64KB的大页面或4KB的小页面,如图2.4所示。Linux内核通常使用4KB大小的小页面。
我们知道程序代码和数据必须驻留在内存中才能得以运行,然而系统内存数量很有限,往往不能容纳一个完整程序的所有代码和数据,更何况在多任务系统中,可能需要同时打开子处理程序,画图程序,浏览器等很多任务,想让内存驻留所有这些程序显然不太可能。因此首先能想到的就是将程序分割成小份,只让当前系统运行它所有需要的那部分留在内存,其它部分都留在硬盘。当系统处理完当前任务片段后,再从外存中调入下一个待运行的任务片段。的确,老式系统就是这样处理大任务的,而且这个工作是由程序员自行完成。但是随着程序语言越来越高级,程序员对系统体系的依赖程度降低了,很少有程序员能非常清楚的驾驭系统体系,因此放手让程序员负责将程序片段化和按需调入轻则降低效率,重则使得机器崩溃;再一个原因是随着程序越来越丰富,程序的行为几乎无法准确预测,程序员自己都很难判断下一步需要载入哪段程序。因此很难再靠预见性来静态分配固定大小的内存,然后再机械地轮换程序片进入内存执行。系统必须采取一种能按需分配而不需要程序员干预的新技术。
虚拟内存是一种操作系统提供的机制,用于将每个进程分配的独立的虚拟地址空间映射到实际的物理内存地址空间上。通过使用虚拟内存,操作系统可以有效地解决多个应用程序直接操作物理内存可能引发的冲突问题。
TLB 是页表项的物理 cache,用于加速虚拟地址到物理地址的转换。CPU 在访问一个虚拟地址时,首先会在 TLB 中查找,如果找不到对应的表项,那么就称之为 TLB miss,此时就需要去内存里查询页表,如果页表项是合法的,那么就会把它添加到 TLB 中。如果内核修改了页表,那么就需要主动的去清空一下当前的 TLB。
本文介绍了地址空间和二级页表、Linux下的线程、线程的优缺点以及线程与进程的关系等概念。
操作系统用于处理内存访问异常的入口操作系统的核心任务是对系统资源的管理,而重中之重的是对CPU和内存的管理。为了使进程摆脱系统内存的制约,用户进程运行在虚拟内存之上,每个用户进程都拥有完整的虚拟地址空间,互不干涉。而实现虚拟内存的关键就在于建立虚拟地址(Virtual Address,VA)与物理地址(Physical Address,PA)之间的关系,因为无论如何数据终究要存储到物理内存中才能被记录下来。
熊军(老熊) 云和恩墨西区总经理 Oracle ACED,ACOUG核心会员 PC Server发展到今天,在性能方面有着长足的进步。64位的CPU在数年前都已经进入到寻常的家用PC之中,更别说是更高端的PC Server;在Intel和AMD两大处理器巨头的努力下,x86 CPU在处理能力上不断提升;同时随着制造工艺的发展,在PC Server上能够安装的内存容量也越来越大,现在随处可见数十G内存的PC Server。正是硬件的发展,使得PC Server的处理能力越来越强大,性能越来越高。而在稳定性
在Linux内核中,无论如何切换进程,内核地址空间转换到物理地址的关系是永远不变的,主要原因是内核地址空间在所有进程中是共享的。这种设计有几个关键点:
(外部)内存碎片是一个历史悠久的 Linux 内核编程问题,随着系统的运行,页面被分配给各种任务,随着时间的推移内存会逐步碎片化,最终正常运行时间较长的繁忙系统可能只有很少的物理页面是连续的。由于 Linux 内核支持虚拟内存管理,物理内存碎片通常不是问题,因为在页表的帮助下,物理上分散的内存在虚拟地址空间仍然是连续的 (除非使用大页),但对于需要从内核线性映射区分配连续物理内存的需求来说就会变的非常困难,比如通过块分配器分配结构体对象 (在内核态很常见且频繁的操作),或对不支持 scatter/gather 模式的 DMA 缓冲器的操作等,会引起频繁的直接内存回收/规整,导致系统性能出现较大的波动,或分配失败 (在慢速内存分配路径会根据页面分配标志位执行不同的操作)。
作者简介: 程磊,一线码农,在某手机公司担任系统开发工程师,日常喜欢研究内核基本原理。 1.1 内存管理的意义 1.2 原始内存管理 1.3 分段内存管理 1.4 分页内存管理 1.5 内存管理的目标 1.6 Linux内存管理体系 2.1 物理内存节点 2.2 物理内存区域 2.3 物理内存页面 2.4 物理内存模型 2.5 三级区划关系 3.1 Buddy System 3.1.1 伙伴系统的内存来源 3.1.2 伙伴系统的管理数据结构 3.1.3 伙伴系统的算法逻辑 3.1.4 伙伴系统的接口 3.1
KSMA的全称是Kernel Space Mirror Attack,即内核镜像攻击。本文主要记录对该攻击方法的原理分析以及Linux内核中相关内存管理部分。
基于ARMv8-A架构的处理器最大可以支持到48根地址线,也就是寻址2的48次方的虚拟地址空间,即虚拟地址空间范围为0x0000_0000_0000_0000~0x0000_FFFF_FFFF_FFFF,共256TB。
虽然讲解完了内核线程的创建过程,但是似乎又少点什么,那么下面我们来看两个细节:内核线程执行处理函数和内核线程上下文切换细节:
与硬件相关的代码全部放在 arch(architecture 一词的缩写,即体系结构相关)目录下。
本文涉及的硬件平台是X86,如果是其他平台的话,如ARM,是会使用到MMU,但是没有使用到分段机制; 最近在学习Linux内核,读到《深入理解Linux内核》的内存寻址一章。原本以为自己对分段分页机制已经理解了,结果发现其实是一知半解。于是,查找了很多资料,最终理顺了内存寻址的知识。现在把我的理解记录下来,希望对内核学习者有一定帮助,也希望大家指出错误之处。
虚拟内存就是在你电脑的物理内存不够用时把一部分硬盘空间作为内存来使用,这部分硬盘空间就叫作虚拟内存。
内存映射mmap是Linux内核的一个重要机制,它和虚拟内存管理以及文件IO都有直接的关系,这篇细说一下mmap的一些要点。
作者:mosun,腾讯 PCG 后台开发工程师 一、虚拟内存 1.1 虚拟内存引入 我们知道计算机由 CPU、存储器、输入/输出设备三大核心部分组成,如下: CPU 运行速度很快,在完全理想的状态下,存储器应该要同时具备以下三种特性: 速度足够快:这样 CPU 的效率才不会受限于存储器; 容量足够大:容量能够存储计算机所需的全部数据; 价格足够便宜:价格低廉,所有类型的计算机都能配备; 然而,出于成本考虑,当前计算机体系中,存储都是采用分层设计的,常见层次如下: 上图分别为寄存器、高速缓存、主存和磁盘,
这本书是个人看过的讲操作系统底层里面讲的最通俗易懂的了,但是200多页的内容确实讲不了多深的内容,所以不要对这本书抱有过高期待,当一个入门书了解即可。
③ 引导内存分配器 : 页分配器 , 块分配器 , 不连续页分配器 , 连续内存分配器 , 每处理器内存分配器 ;
Linux操作系统概述 Q1.什么是GNU?Linux与GNU有什么关系? A: 1)GNU是GNU is Not Unix的递归缩写,是自由软件基金会(Free Software Foundation,FSF)的一个项目,该项目已经开发了许多高质量的编程工具,包括emacs编辑器、著名的GNU C和C++编译器(gcc和g++); 2)Linux的开发使用了许多GNU工具,Linux系统上用于实现POSIX.2标准的工具几乎都是由GNU项目开发的;Linux内核、GNU工具以及其它一些自由软件组成
基于前言中的内核配置,内核采用39位虚拟地址,因此可寻址范围为2^39 = 512G,采用(linux 默认为五级页表,另外还有PUD,P4D,由于本文只配置三级,其他两项不予罗列)3级页表结构,分别为:
前面我们提到Linux内核仅使用了较少的分段机制,但是却对分页机制的依赖性很强,其使用一种适合32位和64位结构的通用分页模型,该模型使用四级分页机制,即
Linux 内存管理模型非常直接明了,因为 Linux 的这种机制使其具有可移植性并且能够在内存管理单元相差不大的机器下实现 Linux,下面我们就来认识一下 Linux 内存管理是如何实现的。
内存是计算机的主存储器。内存为进程开辟出进程空间,让进程在其中保存数据。我将从内存的物理特性出发,深入到内存管理的细节,特别是了解虚拟内存和内存分页的概念。
Kmalloc分配的是连续的物理地址空间。如果需要连续的物理页,可以使用此函数,这是内核中内存分配的常用方式,也是大多数情况下应该使用的内存分配方式。
Linux内核由于存在page cache, 一般修改的文件数据并不会马上同步到磁盘,会缓存在内存的page cache中,我们把这种和磁盘数据不一致的页称为脏页,脏页会在合适的时机同步到磁盘。为了回写page cache中的脏页,需要标记页为脏。
对于没有启用物理地址扩展的32位系统,两级页表已经足够了。从本质上说Linux通过使“页上级目录”位和“页中间目录”位全为0,彻底取消了页上级目录和页中间目录字段。不过,页上级目录和页中间目录在指针序列中的位置被保留,以便同样的代码在32位系统和64位系统下都能使用。内核为页上级目录和页中间目录保留了一个位置,这是通过把它们的页目录项数设置为1,并把这两个目录项映射到页全局目录的一个合适的目录项而实现的。
在 x86 系统中,内存管理中的分页机制是非常重要的,在Linux操作系统相关的各种书籍中,这部分内容也是重笔浓彩。
韩传华,就职于国内一家半导体公司,主要从事linux相关系统软件开发工作,负责Soc芯片BringUp及系统软件开发,乐于分享喜欢学习,喜欢专研Linux内核源代码。
理解Linux内核最好预备的知识点 Linux内核的特点 Linux内核的任务 内核的组成部分 哪些地方用到了内核机制? Linux进程 Linux创建新进程的机制 Linux线程 内核线程 地址空间与特权级别 虚拟地址与物理地址 特权级别(Linux的两种状态) 系统调用 设备驱动程序、块设备和字符设备 网络 文件系统
进程地址空间的隔离 是现代操作系统的一个显著特征。这也是区别于 “古代”操作系统 的显著特征。
最近一直在学习内存管理,也知道MMU是管理内存的映射的逻辑IP,还知道里面有个TLB。
廖威雄,目前就职于珠海全志科技股份有限公司从事linux嵌入式系统(Tina Linux)的开发,主要负责文件系统和存储的开发和维护,兼顾linux测试系统的设计和持续集成的维护。
应用程序和驱动程序之间传递数据时,可以通过read、write函数进行。这涉及在用户态buffer和内核态buffer之间传数据,如下图所示:
领取专属 10元无门槛券
手把手带您无忧上云