---- Hello、Hello大家好,我是木荣,今天我们继续来聊一聊Linux中多线程编程中的重要知识点,详细谈谈多线程中同步和互斥机制。 同步和互斥 互斥:多线程中互斥是指多个线程访问同一资源时同时只允许一个线程对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的; 同步:多线程同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源
信号量强调的是线程(或进程)间的同步:“信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在sem_wait的时候,就阻塞在那里)。当信号量为单值信号量时,也可以完成一个资源的互斥访问。信号量测重于访问者对资源的有序访问,在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。
桔妹导读:死锁是多线程和分布式程序中常见的一种严重问题。死锁是毁灭性的,一旦发生,系统很难或者几乎不可能恢复;死锁是随机的,只有满足特定条件才会发生,而如果条件复杂,虽然发生概率很低,但是一旦发生就非常难重现和调试。使用锁而产生的死锁是死锁中的一种常见情况。Linux 内核使用 Lockdep 工具来检测和特别是预测锁的死锁场景。然而,目前 Lockdep 只支持处理互斥锁,不支持更为复杂的读写锁,尤其是递归读锁(Recursive-read lock)。因此,Lockdep 既会出现由读写锁引起的假阳性预测错误,也会出现假阴性预测错误。
很多时候,我们做项目并不会创建那么多进程,而是创建一个进程,在该进程中创建多个线程进行工作。
要是对协程的使用感兴趣的话,可以看看这篇文章简单了解一下瞅一眼就会使用GO的并发编程分享
在Go语言的并发编程中,互斥锁(sync.Mutex)与读写锁(sync.RWMutex)是实现线程安全、保护共享资源免受竞态条件影响的核心工具。本文将深入浅出地解析这两种锁的特性和用法,探讨常见问题、易错点及应对策略,并通过代码示例加深理解。
在Go语言中,锁用于同步访问共享资源。Go语言提供了两种类型的锁:互斥锁(mutex)和读写锁(RWMutex)。
先看看互斥锁,它只有两个状态,要么是加锁状态,要么是不加锁状态。假如现在一个线程a只是想读一个共享变量 i,因为不确定是否会有线程去写它,所以我们还是要对它进行加锁。但是这时又有一个线程b试图去读共享变量 i,发现被锁定了,那么b不得不等到a释放了锁后才能获得锁并读取 i 的值,但是两个读取操作即使是同时发生的,也并不会像写操作那样造成竞争,因为它们不修改变量的值。所以我们期望在多个线程试图读取共享变量的时候,它们可以立刻获取因为读而加的锁,而不是需要等待前一个线程释放。
实时分为硬实时和软实时,硬实时要求绝对保证响应时间不超过期限,如果超过期限,会造成灾难性的后果,例如汽车在发生碰撞事故时必须快速展开安全气囊;软实时只需尽力使响应时间不超过期限,如果偶尔超过期限,不会造成灾难性的后果.
相信需要了解这方面的知识的小伙伴,已经基本对进程间通信和线程间通信有了一定了解。例如,进程间通信的机制之一:共享内存(在这里不做详解):多个进程可同时访问同一块内存。如果不对访问这块内存的临界区进行互斥或者同步,那么进程的运行很可能出现一些不可预知的错误和结果。
我们对Go语言所提供的与锁有关的API进行说明。这包括了互斥锁和读写锁。我们在第6章描述过互斥锁,但却没有提到过读写锁。这两种锁对于传统的并发程序来说都是非常常用和重要的。
互斥锁是传统的并发程序对共享资源进行访问控制的主要手段。它由标准库代码包sync中的Mutex结构体类型代表。sync.Mutex类型(确切地说,是*sync.Mutex类型)只有两个公开方法——Lock和Unlock。顾名思义,前者被用于锁定当前的互斥量,而后者则被用来对当前的互斥量进行解锁。 类型sync.Mutex的零值表示了未被锁定的互斥量。也就是说,它是一个开箱即用的工具。我们只需对它进行简单声明就可以正常使用了,就像这样:
在本节,我们对Go语言所提供的与锁有关的API进行说明。这包括了互斥锁和读写锁。我们在第6章描述过互斥锁,但却没有提到过读写锁。这两种锁对于传统的并发程序来说都是非常常用和重要的。 一、互斥锁 互斥锁是传统的并发程序对共享资源进行访问控制的主要手段。它由标准库代码包sync中的Mutex结构体类型代表。sync.Mutex类型(确切地说,是*sync.Mutex类型)只有两个公开方法——Lock和Unlock。顾名思义,前者被用于锁定当前的互斥量,而后者则被用来对当前的互斥量进行解锁。 类型sync.Mut
现代操作系统基本都是多任务操作系统,即同时有大量可调度实体在运行。在多任务操作系统中,同时运行的多个任务可能:
锁是一个常见的同步概念,我们都听说过加锁(lock)或者解锁(unlock),当然学术一点的说法是获取(acquire)和释放(release)。
互斥锁 同一时刻只有一个携程在操作 package main import ( "fmt" "math/rand" "sync" "time" ) //互斥锁 var lock sync.Mutex func testMap() { var a map[int]int a = make(map[int]int, 5) a[8] = 10 a[3] = 10 a[2] = 10 a[1] = 10 for i := 0
前面已经讲过很多Golang系列知识,感兴趣的可以看看以前的文章,https://www.cnblogs.com/zhangweizhong/category/1275863.html,
互斥锁我们都知道会锁定代码临界区,当有一个goroutine获取了互斥锁后,任何goroutine都不可以获取互斥锁,只能等待这个goroutine将互斥锁释放,无论读写操作都会加上一把大锁,在读多写少场景效率会很低,所以大佬们就设计出了读写锁,读写锁顾名思义是一把锁分为两部分:读锁和写锁,读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的,总结来说:读读不互斥,读写互斥,写写互斥;
多线程访问共享资源的时候,避免不了资源竞争而导致数据错乱的问题,所以我们通常为了解决这一问题,都会在访问共享资源之前加锁。
典型的UNIX系统都支持一个进程创建多个线程(thread)。在Linux进程基础中提到,Linux以进程为单位组织操作,Linux中的线程也都基于进程。尽管实现方式有异于其它的UNIX系统,但Linux的多线程在逻辑和使用上与真正的多线程并没有差别。 多线程 我们先来看一下什么是多线程。在Linux从程序到进程中,我们看到了一个程序在内存中的表示。这个程序的整个运行过程中,只有一个控制权的存在。当函数被调用的时候,该函数获得控制权,成为激活(active)函数,然后运行该函数中的指令。与此同时,其它的函数
进程在多数早期多任务操作系统中是执行工作的基本单元。进程是包含程序指令和相关资源的集合,每个进程和其他进程一起参与调度,竞争 CPU 、内存等系统资源。每次进程切换,都存在进程资源的保存和恢复动作,这称为上下文切换。进程的引入可以解决多用户支持的问题,但是多进程系统也在如下方面产生了新的问题:进程频繁切换引起的额外开销可能会严重影响系统性能。
文章主要介绍了在Linux系统中,如何利用自旋锁来实现线程之间的同步和互斥。主要包括了自旋锁的定义、工作原理、使用方式和注意事项,并通过实例介绍了如何在C语言中实现自旋锁。
但生活中也不是没有 BUG 的,比如加锁的电动车在「广西 - 窃·格瓦拉」面前,锁就是形同虚设,只要他愿意,他就可以轻轻松松地把你电动车给「顺走」,不然打工怎么会是他这辈子不可能的事情呢?牛逼之人,必有牛逼之处。
从本篇文章开始,我们将一起探讨 Go 语言自带标准库中一些比较核心的代码包。这会涉及这些代码包的标准用法、使用禁忌、背后原理以及周边的知识。
一、互斥锁 互斥锁是传统的并发程序对共享资源进行访问控制的主要手段。它由标准库代码包sync中的Mutex结构体类型代表。sync.Mutex类型(确切地说,是*sync.Mutex类型)只有两个公开方法——Lock和Unlock。顾名思义,前者被用于锁定当前的互斥量,而后者则被用来对当前的互斥量进行解锁。 类型sync.Mutex的零值表示了未被锁定的互斥量。也就是说,它是一个开箱即用的工具。我们只需对它进行简单声明就可以正常使用了,就像这样: var mutex sync.Mutex mutex.Lo
最后运行的结果不是固定的,有可能是0、-1,如果有这个ticket_num变量代表是库存的话,那么就会出现库存为负数的情况,所以需要引入线程同步来保证线程安全。
在MySQL种,执行show engine innodb status \G 经常会看到里面有spin lock 及mutex的情况。我们有必要了解下这些知识。
很多语言的并发编程很容易在同时修改某个变量的时候,因为操作不是原子的,而出现错误计算,比如一个加法运算使用中的变量被修改,而导致计算结果出错,典型的像统计商品库存。
Mutex:互斥锁 RWMutex:读写锁 WaitGroup:等待组 Once:单次执行 Cond:信号量 Pool:临时对象池 Map:自带锁的map
联合锁,multiLock,这个我们之前也是分析过的,申请多个小锁,合并成一个大锁,并且要保证这多个小锁都要在规定时间内要加锁成功,才算加锁成功,进行业务逻辑处理,最后也是要依次释放所有的锁。
之前我们介绍了互斥锁 Mutex,今天再来介绍下 RWMutex,即读写锁。读写锁是对 Mutex 的改进,在程序中,如果存在读操作多,写操作少的场景,使用 RWMutex 相比 Mutex 的并发能力会有很大的提升。
在Rust源代码中,rust/library/std/src/sys/unsupported/time.rs文件的作用是提供对于时间的支持,特别是在不支持的操作系统上。
不是什么时候都要靠上锁的。从根源出发,我们为什么需要上锁?因为线程在使用资源的过程中可能会出现冲突,对于这种会出现冲突的资源,还是锁住轮着用比较好。
互斥锁是一种常用的控制共享资源访问的方法,它能够保证同时只有一个goroutine可以访问共享资源。Go语言中使用sync包的Mutex类型来实现互斥锁。 定义一个锁:
面试中经常会被问到高性能服务模型选择对比,以及如何提高服务性能和处理能力,这其中涉及操作系统软件和计算机硬件知识,其实都是在考察候选人的基础知识掌握程度,但如果没准备的话容易一头雾水,这次带大家从头到尾学习一遍,学完这一篇再也不怕面试官刨根问底了!
在多线程环境中,多个线程可能会同时访问同一个资源,为了避免访问发生冲突,可以根据访问的复杂程度采取不同的措施
其中Mutex为互斥锁,Lock()加锁,Unlock()解锁,使用Lock()加锁后,便不能再次对其进行加锁,直到利用Unlock()解锁对其解锁后,才能再次加锁.适用于读写不确定场景,即读写次数没有明显的区别,并且只允许只有一个读或者写的场景,所以该锁叶叫做全局锁.
Golang 的并发模型属于一种很典型的 CSP(communicating sequential processes) 并发模型,其核心是不要通过共享内存来通信,而应该通过通信来共享内存。具体实现,就是通过 goroutine 来实现并发,然后并发的 goroutine 之间通过 Channel 来进行通信;为此,Golang 的并发也有两个明显特点:
读写锁(Readers-Writer Lock)顾名思义是一把锁分为两部分:读锁和写锁,其中读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的。总结来说,读写锁的特点是:读读不互斥、读写互斥、写写互斥。
Golang中有两种类型的锁,Mutex (互斥锁)和RWMutex(读写锁)对于这两种锁的使用这里就不多说了,本文主要侧重于从源码的角度分析这两种锁的具体实现。
在计算机科学中,有一些经典的同步问题,读者-作家问题就是其中一个,该问题涉及多个并发线程试图同时访问同一共享资源的情况。
Java提供了许多功能强大的工具和技术,用于实现并发编程和解决资源争夺问题。在本文中,下面将介绍一些常用的Java并发编程概念、技术和解决方案。
在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类。介绍的内容如下:
领取专属 10元无门槛券
手把手带您无忧上云