用反向传播(backpropagation)来计算优化目标函数的梯度,是当前机器学习领域的主流方法。近日,牛津与微软等机构的多位学者联合提出一种名为「正向梯度」(forward gradient)的自动微分模式,可以完全抛弃反向传播进行梯度计算。实验证明,在一些问题中,正向梯度的计算时间是反向传播的二分之一。 编译 | 张倩 编辑 | 陈彩娴 反向传播和基于梯度的优化是近年来机器学习(ML)取得重大突破的核心技术。 人们普遍认为,机器学习之所以能够快速发展,是因为研究者们使用了第三方框架(如PyTorch、
机器之心报道 机器之心编辑部 JAX 是机器学习 (ML) 领域的新生力量,它有望使 ML 编程更加直观、结构化和简洁。 在机器学习领域,大家可能对 TensorFlow 和 PyTorch 已经耳熟能详,但除了这两个框架,一些新生力量也不容小觑,它就是谷歌推出的 JAX。很对研究者对其寄予厚望,希望它可以取代 TensorFlow 等众多机器学习框架。 JAX 最初由谷歌大脑团队的 Matt Johnson、Roy Frostig、Dougal Maclaurin 和 Chris Leary 等人发起。
从【DL笔记1】到【DL笔记N】,是我学习深度学习一路上的点点滴滴的记录,是从Coursera网课、各大博客、论文的学习以及自己的实践中总结而来。从基本的概念、原理、公式,到用生动形象的例子去理解,到动手做实验去感知,到著名案例的学习,到用所学来实现自己的小而有趣的想法......我相信,一路看下来,我们可以感受到深度学习的无穷的乐趣,并有兴趣和激情继续钻研学习。 正所谓 Learning by teaching,写下一篇篇笔记的同时,我也收获了更多深刻的体会,希望大家可以和我一同进步,共同享受AI无穷的乐趣。
TensorFlow:google开源的,当前版本已经有高级API、可视化工具、GPU支持、异步执行。
Pytorch是一个基于Python的机器学习库。它广泛应用于计算机视觉,自然语言处理等深度学习领域。是目前和TensorFlow分庭抗礼的深度学习框架,在学术圈颇受欢迎。
选自Stanford 作者:李飞飞等 机器之心编译 参与:Smith、蒋思源 斯坦福大学的课程 CS231n (Convolutional Neural Networks for Visual Recognition) 作为深度学习和计算机视觉方面的重要基础课程,在学界广受推崇。今年 4 月,CS231n 再度开课,全新的 CS231n Spring 2017 仍旧由李飞飞带头,带来了很多新鲜的内容。今天机器之心给大家分享的是其中的第八讲——深度学习软件(Deep Learning Software)。主
来源:sandipanweb 编译:Bot 编者按:之前,论智曾在TOP 10:初学者需要掌握的10大机器学习(ML)算法介绍了一些基础算法及其思路,为了与该帖联动,我们特从机器学习热门课程HSE的Introduction to Deep Learning和吴恩达的Neural Networks and Deep Learning中挑选了一些题目,演示Python、TensorFlow和Keras在深度学习中的实战应用。 “课后作业”第二题如何用一个只有一层隐藏层的神经网络分类Planar data,来自吴
很多情况下,研究人员会遇到一个问题:使用机器学习框架实现的神经网络可能与理论模型相去甚远。验证这款模型是否可靠,直接方式就是不断修正和调参。
Keras、TensorFlow、PyTorch等高层框架让我们可以快速搭建复杂模型。然而,花一点时间了解下底层概念是值得的。前不久我发过一篇文章,以简单的方式解释了神经网络是如何工作的。但这是一篇高度理论性的文章,主要以数学为主(数学是神经网络超能力的来源)。我打算以实践的方式继续这一主题,在这篇文章中,我们将尝试仅仅基于NumPy创建一个可以工作的神经网络。最后,我们将测试一下创建的模型——用它来解决简单的分类问题,并和基于Keras搭建的神经网络比较一下。
选自GitHub 作者:iamtrask 机器之心编译 参与:王宇欣、Ellen Han 在这篇博文中,我们将从起点(从零开始)学习 DeepMind 最近提出的一篇论文—使用合成梯度的解耦神经接口。读者可以点击「阅读原文」下载此论文。 合成梯度概述 通常,神经网络将其预测与数据集进行比较,以决定如何更新其权重。然后使用反向传播来确定每个权重应该如何移动,以使预测更加准确。然而,对于合成梯度来说,数据的「最佳预测」由各层完成,然后基于这个预测更新权重。这个「最佳预测」被称为合成梯度。数据仅用于帮助更新每个
如今,我们拥有许多高级的,特殊的库与框架,比如 Keras,TensorFlow或者PyTorch,也不再总需要担心权重矩阵的大小,更不需要记住我们决定使用的激活函数导数的公式。通常我们只需要尽力一个神经网络,即使是一个结构非常复杂的神经网络,也只需要导入和几行代码就可以完成了。这节省了我们搜索漏洞的时间并简化了我们的工作。但是,对于神经网络的深入了解对我们完成在构架选择,或者超参数的调整或优化的任务上有着很大的帮助。
注:本文将包含大量用 Python 编写的代码片段。希望读起来不会太无聊。:)所有源代码都可以在作者的 GitHub 上找到。链接:https://github.com/SkalskiP/ILearnDeepLearning.py
【导读】1月4日,Mateusz Dziubek发布了一篇基础的介绍神经网络的博文,作者用一种直观的方法来解释神经网络以及其学习过程,作者首先探讨了导致神经网络过于复杂的几个因素:大量系数、梯度计算慢
用tensorflow,pytorch这类深度学习库来写一个神经网络早就不稀奇了。
【导读】如今,反向传播算法(Backpropagation)可以说是神经网络模型的标配学习方法,可以在网络的学习过程中计算损失函数的偏导数,从而进一步用随机梯度下降等算法来求解参数。但是,本文作者Ka
在本文中,我们将深入探讨深度学习的核心概念和原理,以及如何使用Python和TensorFlow库构建和训练神经网络。我们将从基础开始,逐步介绍神经网络的结构、前向传播、反向传播和优化方法,以便读者能够深入理解并开始实际编写深度学习代码。
【磐创AI导读】:本篇文章为大家介绍了深度学习框架Keras与Pytorch对比,希望对大家有所帮助。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
原文:https://maoli.blog.csdn.net/article/details/88777955
原文链接:https://juejin.im/post/5d46816e51882560b9544ac1
如今,熟练使用像 Keras、TensorFlow 或 PyTorch 之类的专用框架和高级程序库后,我们不用再经常费心考虑神经网络模型的大小,或者记住激活函数和导数的公式什么的。有了这些库和框架,我们创建一个神经网络,哪怕是架构很复杂的网络,往往也只是需要几个导入和几行代码而已。如下示例:
在学习神经网络之前,我们需要对神经网络底层先做一个基本的了解。我们将在本节介绍感知机、反向传播算法以及多种梯度下降法以给大家一个全面的认识。
教程地址:http://www.showmeai.tech/tutorials/36
机器学习研究,已经在多个方面都取得了进步,包括模型结构和优化方法等。而使此类研究自动化的工作(称为AutoML)也有重大进展。这一进展主要集中在神经网络的体系结构,神经网络目前主要是依赖于专家设计复杂的层来构建块(或类似的限制性搜索空间)。
前言:深度学习的初始化参数指的是在网络训练之前,对各个节点的权重和偏置进行初始化的过程,很多时候我们以为这个初始化是无关紧要的,不需要什么讲究,但是实际上,一个参数的初始化关系到网络能否训练出好的结果或者是以多快的速度收敛,这都是至关重要的,有时候因为参数初始化的缘故,甚至得不到好的训练结果。本文就来讨论一下参数初始化到底有什么讲究以及常见的参数初始化的一些策略方法。阅读本文需要神经网络相关背景,能够理解误差反向传播算法的实现过程。
来自Amazon,谷歌,Meta, Microsoft等的面试问题,本文接着昨天的文章整理了机器学习和深度学习的问题
反向传播(Backpropagation,简称 BP)是目前用来训练人工神经网络(Artificial Neural Network,简称 ANN)算法最常用、最有效的方法。
近日,Julia Computing 团队发表论文表示他们构建了一种可微编程系统,它能将自动微分内嵌于 Julia 语言,从而将其作为第一级的语言特性。也就是说,我们以后直接用 Julia 语言及可微编程就能写模型了?都不需要再调用 TensorFlow 或 PyTorch 这样的框架了?
我们以最简单的网络定义来学习pytorch的基本使用方法,我们接下来要定义一个神经网络,包括一个输入层,一个隐藏层,一个输出层,这些层都是线性的,给隐藏层添加一个激活函数Relu,给输出层添加一个Sigmoid函数
本系列为 斯坦福CS231n 《深度学习与计算机视觉(Deep Learning for Computer Vision)》的全套学习笔记,对应的课程视频可以在 这里 查看。更多资料获取方式见文末。
反向传播算法(Backprop)是很多机器学习算法中主要使用的学习算法。但是在实践中,深度神经网络中的反向传播是一种非常敏感的学习算法,它的成功取决于大量条件和约束。约束的目的是避免产生饱和的激活值,这么做的动机是梯度消失会导致学习过程中断。特定的权重初始化和尺度变换 方案(如批归一化)可确保神经元的输入激活值是线性的,这样梯度不会消失,能够流动。
BP算法(即反向传播算法)适合于多层神经元网络的一种学习算法,它建立在梯度下降法的基础上。BP网络的输入输出关系实质上是一种映射关系:一个n输入m输出的BP神经网络所完成的功能是从n维欧氏空间向m维欧氏空间中一有限域的连续映射,这一映射具有高度非线性。它的信息处理能力来源于简单非线性函数的多次复合,因此具有很强的函数复现能力。这是BP算法得以应用的基础。
人工智能无疑是2017年最火爆的技术,许多外行的朋友想学习却不知道从何下手,所以特意将此文翻译过来,供大家参考。可以在短期之内进入这个领域。这些视频大多数都可以在国内的网站上找到。 这个“前十名单”是根据最佳内容创建的,而不是根据评论数量。为了帮助你选择合适的框架,我们首先从一个比较流行的Python DL库的视频开始。。让我们开始! 1.概述:比较深度学习框架(96K次) - 5分钟 在学习Python,先理解5个最流行的深度学习框架-SciKit Learn,TensorFlow,Theano,Ke
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,近年来在机器学习和深度学习领域取得了巨大成功。本文将深入讲解Python中的人工神经网络,包括基本概念、神经网络结构、前向传播、反向传播、激活函数、损失函数等关键知识点,并通过实际代码示例演示人工神经网络在手写数字识别问题上的应用。
在机器学习和相关领域,人工神经网络的计算模型灵感正是来自生物神经网络:每个神经元与其他神经元相连,当它兴奋时,就会像相邻的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过了一个阈值,那么它就会被激活(兴奋),向其他神经元发送化学物质。
,比较我们可以发现,其实就是增加了一些嵌套的求和符号,因为代价函数最终为一个标量,所以我们需要将
前段时间实验室人手一本《Deep Learning》,本文章结合这本圣经和博客上各类知识以及我自己的理解和实践,针对RNN循环神经网络作出总结。
在生物神经网络中,一个神经元(Neuron,又被称为Unit)会和多个神经元相连,当神经元兴奋时,它会向相连的神经元发送化学物质,进而改变相连神经元的电位;如果某个神经元的电位超过了阈值(Threshold),这个神经元被激活为兴奋状态,再进而向其他神经元发送化学物质。机器学习领域的神经网络(Neural Network)模型借鉴了生物学的一些思想。
动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。
2017年对人工智能和加密货币来说是重要的一年, 我们见证了许多新的研究进展和突破。毋庸置疑,人工智能是当今甚至今后很长一段时间内最令人瞩目的技术之一。 而加密货币在这一年中的热度之高是我所没有预料到的,这是加密货币的一波大牛市,投资加密货币(例如,如比特币,以太币,莱特币,瑞波币等)的资回报率几近疯狂。
本文为雷锋字幕组编译的技术博客,原标题 The 5 Deep Learning Frameworks Every Serious Machine Learner Should Be Familiar With,作者为James Le。
在一次家庭饭局上,我父亲提到:现在科技真发达,连人工智能都出来了,可以识别你的人脸,可以算计你的消费能力,甚至下棋的时候,还能下赢人类中的顶级高手!对此他老人家有个疑问:这些人工智能怎么这么聪明,难道自己就会了?
反向传播算法 目录 关键词 损失函数 反向传播算法 BP算法伪代码 上一篇----》神经网络 》点击查看 1 关键词 反向传播算法 Backpropagation Algorithm 批量梯度下降法 batch gradient descent 整体代价函数 overall cost function 方差 squared-error 均方差 average sum-of-squares error 规则化项 regularization term 权重衰减 weight decay 偏置项 bias te
如今,已有许多像 Keras, TensorFlow, PyTorch 这样高水平的专门的库和框架,我们就不用总担心矩阵的权重太多,或是对使用的激活函数求导时存储计算的规模太大这些问题了。基于这些框架,我们在构建一个神经网络时,甚至是一个有着非常复杂的结构的网络时,也仅需少量的输入和代码就足够了,极大地提高了效率。无论如何,神经网络背后的原理方法对于像架构选择、超参数调整或者优化这样的任务有着很大的帮助。
领取专属 10元无门槛券
手把手带您无忧上云