【摘要】 🌈🌈🌈 大家好呀,很久没有写canvas小案例了,今天写一个canvas的时钟案例。效果可能看起来比较简单,没有那些花里胡哨的,不过,它涉及的canvas知识点是比较多的,初学canvas那是必定要会的。下面手把手带你快速实现~ 一.先看效果: 🌈🌈🌈 大家好呀,很久没有写canvas小案例了,今天写一个canvas的时钟案例。效果可能看起来比较简单,没有那些花里胡哨的,不过,它涉及的canvas知识点是比较多的,初学canvas那是必定要会的。下面手把手带你快速实现~ 二.实现步骤(源码在
首行加入:<link href="https://cdn.bootcdn.net/ajax/libs/twitter-bootstrap/4.6.0/css/bootstrap.min.css" rel="stylesheet">
我们先把菜鸟教程的一段代码拿过来分析一下。下面这段代码是用了将生命周期方法添加到类中实现时钟效果。
emlog侧边栏复古翻牌时钟效果。(涛先森原创) 小编发现,本博客的后边侧边栏总是觉得空空的,反复思索了一下,决定加个时钟 但是时钟现在的人体艺术时钟已经泛滥,思索着整一个新的。 放
如果去测试代码运行的时长,你会选择哪个时间函数?一般第一时间想到的函数是 Date.now 或 Date.getTime。
利用chrome学编程,一切都变得简单... 用chrome学编程,安装浏览器就可以上手,javascript本身也足够强大,前后端通吃,容易出成果,有了成果产生的成就感也就有了持续学习编程的动力.
小轻相信,许多人对网页是很感兴趣并且是很想学习的。当初创立小轻网及小轻论坛网页就是为了帮助大家学习一些技术经验,同时也学会如何去找资源。今天,我们给原有网页加一些部件,达到装饰和增加功能的作用。
Redis是一种基于键值对(Key-Value)的NoSQL数据库,Redis的Value可以由String,hash,list,set,zset,Bitmaps,HyperLogLog等多种数据结构和算法组成。Redis还提供了键过期,发布订阅,事务,Lua脚本,哨兵,Cluster等功能。Redis执行命令的速度非常快,根据官方给的性能可以达到10w+qps。那么本文主要介绍到底Redis快在哪里,主要有以下几点:
这篇博客之前承接上一篇:http://www.cnblogs.com/xuema/p/4335180.html
Nodejs是一个高效的异步服务平台,因此非常适合于开发高并发的后台服务。要满足高并发,后台服务需要做到的是能够及时响应客户端发送过来的请求。这里要注意的是”响应“而不是”完成“,客户端可能要求后台从数据库查询特定数据,后台接收请求后会告诉客户端”你的要求我收到而且正在处理,当我处理完成了再通知你”。由此NodeJS能完成高并发的原因在于,它会将那些耗时长的处理提交给线程池处理,它的主线程则一直响应客户端的请求,等到线程池把耗时久的任务完成,主线程拿到结果后再发送给对应的客户。
Redis 是一种基于键值对 (Key-Value) 的 NoSQL 数据库,Redis 的 Value 可以由 String,hash,list,set,zset,Bitmaps,HyperLogLog 等多种数据结构和算法组成。Redis 还提供了键过期,发布订阅,事务,Lua脚本,哨兵,Cluster 等功能。Redis 执行命令的速度非常快,根据官方给的性能可以达到 10w+ QPS。那么本文主要介绍到底 Redis 快在哪里,主要有以下几点:
前两天给一个包含setTimeout调用的函数写单元测试,在使用fake timer的时候遇到了问题,记录一下。
官方给出的概念:Express是基于Node.js平台,快捷,开放,极简的Web开发框架
动态时钟,就是通过CSS工具的美化效果和引入JavaScript,让网页呈现出钟表的动态效果,让它能够记录时间。通过改变背景颜色、指针颜色和阴影效果,让时钟呈现不同的颜色。
11、MySQL 里有 2000w 数据,redis 中只存 20w 的数据,如何保证 redis 中的数据都是热点数据?
火柴时钟 一款有意思的时钟玩具,原生代码编写,使用 CSS 渲染过渡动效,引入 base64 格式 data url 图片。 引用 <link rel="stylesheet" type="text
时钟是我们用来测量时间的装置。如果使用得当,时钟对于任何 UI 都是有用的元素。时钟可用于以时间为主要关注点的网站,例如一些预订网站或一些显示火车、公共汽车、航班等到达时间的应用程序。时钟基本上有两种类型,模拟和数字。在这里,我们将设计数字时钟并添加一些样式以使其更具吸引力。
Cypress是新一代ui测试框架,类似于selnium,它基于node js,支持webpack构建。
在上篇文章:同步FIFO的两种Verilog设计方法(计数器法、高位扩展法)中我们介绍了FIFO的基本概念,并对同步FIFO的两种实现方法进行了仿真验证。而异步FIFO因为读写时钟不一致,显然无法直接套用同步FIFO的实现方法,所以在本文我们将用Verilog实现异步FIFO的设计。
read_req信号拉高表示请求读数据,若此时FIFO非空(fifo_empty为低),FIFO将会将数据置于read_data上,同时拉高read_valid信号。即当read_valid有效时,对应的read_data上的数据有效。fifo_empty拉高表示FIFO已空,当前数据输出端口上的数据无意义, 再拉高read_req将不会改变read_data上的数据。
如果不了解异步FIFO设计的基本方法,可参考:异步FIFO的Verilg实现方法
当读数据的速率小于写数据的速率时,我们需要先将数据缓存下来,那么我们需要开多大的空间缓存这些数据呢?缓存开大了会浪费资源,开小了会丢失数据,如何去计算最小FIFO深度是本文的重点。
FIFO是英文First In First Out 的缩写,是一种先进先出的数据缓存器,它与普通存储器的区别是没有外部读写地址线,这样使用起来非常简单,但缺点就是只能顺序写入数据。
FIFO有同步和异步两种,同步即读写时钟相同,同步FIFO用的少,可以作为数据缓存;异步即读写时钟不相同,异步FIFO可以 解决跨时钟域的问题,在应用时需根据实际情况考虑好fifo深度即可。 与同步FIFO相同,异步FIFO也主要由五大模块组成,不同的是,异步FIFO的读写逻辑控制还包括了格雷码转换和时钟同步部分: (1)、 FIFO写逻辑控制——产生FIFO写地址、写有效信号,同时产生FIFO写满、写错等状态信号; (2)、 FIFO读逻辑控制——产生FIFO读地址、读有效信号,同时产生FIFO读空、读错等状态信号; (3)、 时钟同步逻辑——通过两级DFF分别将写时钟域的写指针同步到读时钟域,将读时钟域的读指针同步到写时钟域; (4)、 格雷码计数器——格雷码计数器中二进制计数器的低(n-1)位可以直接作为FIFO存储单元的地址指针; (3)、 FIFO存储体(如Memory,reg等)。 其逻辑结构如下所示:
Butterfly主题v3.4.0及其以后版本基本已经实现完全去jquery化,而本帖有使用到jquery,不想再次引入js的可以考虑使用站内的原生JS计时器。
经典电路设计是数字IC设计里基础中的基础,盖大房子的第一部是打造结实可靠的地基,每一篇笔者都会分门别类给出设计原理、设计方法、verilog代码、Testbench、仿真波形。然而实际的数字IC设计过程中考虑的问题远多于此,通过本系列希望大家对数字IC中一些经典电路的设计有初步入门了解。能力有限,纰漏难免,欢迎大家交流指正。快速导航链接如下:
网页主要是由HTML,CSS和JavaScript三者构成的,上一课做的图片画廊用到了HTML和CSS,今天就来试试JavaScript。
设计一个双端口的RAM,具有独立的读写时钟,独立读写地址和数据端口,具有复位功能,并具有读和写的使能信号。
前面提及到同步FIFO的设计,同步FIFO。但是在大规模的数字电路设计中,多时钟域往往是不可避免的,这样就会产生了跨时钟域传输等问题,为了解决跨时钟域问题,我们常常采取的方法是握手协议和异步FIFO做数据缓冲区,异步FIFO既可以使相异时钟域数据传输的时序要求变得宽松,也提高了它们之间的传输效率。
动态重新配置端口(DRP)允许动态改变GTXE2_CHANNEL/GTHE2_CHANNEL和GTXE2_COMMON/GTHE2_COMMON原语的参数。DRP接口是一个对处理器友好的同步接口,有一个地址总线(DRPADDR)和分离的数据总线,用于向原语读取(DRPDO)和写入(DRPDI)配置数据。启用信号(DRPEN)、读/写信号(DRPWE)和准备/验证信号(DRPRDY)是实现读写操作、指示操作完成或指示数据可用性的控制信号。
大侠们,江湖偌大,有缘相见,欢迎一叙,今天来聊一聊在数字电路设计中,基于FPGA的异步FIFO的实现,在很多厂商的开发软件中都有异步FIFO IP核,为安全起见推荐使用IP核定制FIFO,本文的目的只是作为思路参考。
好看的动态时钟,觉得挺好看的,可自行修改时间颜色,需要的可自行添加美化自己博客! 使用教程 下载JS文件上传至服务器根目录下 如果是wordpress,将下面代码复制至外观→小工具→自定义HTML文本中 像我这种typecho的或者其他的博客系统,自行放在合适的位置即可,颜色参考点我选择 代码演示 改时钟颜色自行下载代码 <canvas id="canvas" style="width:100%;" height="250"></canvas><script src="https://web-static.
各位大侠,今天来聊一聊在数字电路设计中,基于FPGA的异步FIFO的实现,在很多厂商的开发软件中都有异步FIFO IP核,为安全起见推荐使用IP核定制FIFO,本文的目的只是作为思路参考。
本文大部分内容来自Clifford E. Cummings的《Simulation and Synthesis Techniques for Asynchronous FIFO Design》,经过自己的一些改变,理论部分为转载,代码自己完成。
FIFO是一种先进先出数据缓存器,它与普通存储器的区别是没有外部读写地址线,使用起来非常简单,缺点是只能顺序读写,而不能随机读写。
FIFO在硬件上是一种地址依次自增的Simple Dual Port RAM,按读数据和写数据工作的时钟域是否相同分为同步FIFO和异步FIFO,其中同步FIFO是指读时钟和写时钟为同步时钟,常用于数据缓存和数据位宽转换;异步FIFO通常情况下是指读时钟和写时钟频率有差异,即由两个异步时钟驱动的FIFO,由于读写操作是独立的,故常用于多比特数据跨时钟域处理。本文仅讨论异步FIFO的设计。
FIFO根据输入输出时钟是否一致,分为同步FIFO与异步FIFO。同步FIFO中,读写控制信号以及数据均处于同一时钟域,满足STA分析时一般不会出现亚稳态等不稳定情形;而对于异步FIFO,读写相关信号处于不同时钟域,信号的不同步可能会导致亚稳态,导致FIFO工作异常,设计较为复杂;在之前的记录中,我们对同步FIFO的设计进行了分析:
大家好,我是喵喵侠。先前体验过一期混元大模型,有亮点有槽点。好在官方团队每隔一段时间,就会对大模型进行迭代优化,那么这次再来看看,混元大模型的实际表现如何。这里我准备了一些问题,让我们来一探究竟吧!
在讲解如何去计算FIFO深度之前,我们来理解一个术语burst length,如果你已经了解了可以跳过。要理解数据的突发长度,首先我们来考虑一种场景,假如模块A不间断的往FIFO中写数据,模块B同样不间断的从FIFO中读数据,不同的是模块A写数据的时钟频率要大于模块B读数据的时钟频率,那么在一段时间内总是有一些数据没来得及被读走,如果系统一直在工作,那么那些没有被读走的数据会越累积越多,那么FIFO的深度需要是无穷大的,因此只有在突发数据传输过程中讨论FIFO深度才是有意义的。也就是说我们一次传递一包数据完成后再去传递下一包数据,我们把一段时间内传递的数据个数称为burst length。在维基百科中,burst transmission是这样解释的:In telecommunication, a burst transmission or data burst is the broadcast of a relatively high-bandwidth transmission over a short period。
DS1302 可慢速充电实时时钟芯片包含实时时钟/日历和 31 字节的非易失性静态 RAM。它经过一个简 单的串行接口与微处理器通信。实时时钟/日历可对秒,分,时,日,周,月,和年进行计数,对于小于 31 天的月,月末的日期自动进行调整,还具有闰年校正的功能。时钟可以采用 24 小时格式或带 AM(上 午)/PM(下午)的 12 小时格式。31 字节的== RAM== 可以用来临时保存一些重要数据。使用同步串行通信, 简化了 DS1302 与微处理器的通信。与时钟/RAM 通信仅需3 根线:(1)RST(复位),(2)I/O(数据线) 和(3)SCLK(串行时钟)。数据可以以每次一个字节的单字节形式或多达 31 字节的多字节形式传输。DS1302 能在非常低的功耗下工作,消耗小于 1µW 的功率便能保存数据和时钟信息。
FIFO是英文First In First Out 的缩写,是一种先进先出的数据缓存器,他与普通存储器的区别是没有外部读写地址线,这样使用起来非常简单,但缺点就是只能顺序写入数据,顺序的读出数据, 其数据地址由内部读写指针自动加1完成,不能像普通存储器那样可以由地址线决定读取或写入某个指定的地址。
数字IC设计中我们经常会遇到这种场景,工作在不同时钟域的两个模块,它们之间需要进行数据传递,为了避免数据丢失,我们会使用到FIFO。当读数据的速率小于写数据的速率时,我们就不得不将那些还没有被读走的数据缓存下来,那么我们需要开多大的空间去缓存这些数据呢?缓存开大了会浪费资源,开小了会丢失数据,如何去计算最小FIFO深度是我们讨论的重点。
如上图所示的同步模块synchronize to write clk,其作用是把读时钟域的指针rptr采集到写时钟wr_clk域,然后和写时针wptr进行比较从而产生或撤销写写满标志wfull;类似地,同步模块synchronize to read clk的作用是把写时钟域的写指针wptr采集到读时钟域,然后和读指针rptr进行比较从而产生或撤销读空标志位rempty。
DVIIN1_CLK为输入视频源的随路时钟,用于检测分辨率的时钟,行分辨率的检测从视频源的数据有效信号DVIIN1_DE的上升沿开始计数,直到DVIIN1_DE的下降沿对HsNum锁存输出。列分辨率的检测的是一个DVIIN1_HS有效期间检测DVIIN1_DE的上升沿或者下降沿个数(实现方式如下),然后在DVIIN1_HS的下降沿将VsNum锁存输出。
跨时钟域处理是 FPGA 设计中经常遇到的问题,而如何处理好跨时钟域间的数据,可以说是每个FPGA初学者的必修课。如果是还在校生,跨时钟域处理也是面试中经常常被问到的一个问题。
Node.js 是当前用来构建可扩展的、高效的 REST API's 的最流行的技术之一。它还可以用来构建混合移动应用、桌面应用甚至用于物联网领域。
本文讲述下利用sdram缓存从摄像头处得到的数据,并将图像显示到显示屏上的工程架构。本文不涉及具体的代码讲解,只描述其中的实现思路。
领取专属 10元无门槛券
手把手带您无忧上云