首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习中如何选择分类器

    在机器学习中,分类器作用是在标记好类别的训练数据基础上判断一个新的观察样本所属的类别。分类器依据学习的方式可以分为非监督学习和监督学习。 非监督学习顾名思义指的是给予分类器学习的样本但没有相对应类别标签,主要是寻找未标记数据中的隐藏结构。 监督学习通过标记的训练数据推断出分类函数,分类函数可以用来将新样本映射到对应的标签。在监督学习方式中,每个训练样本包括训练样本的特征和相对应的标签。监督学习的流程包括确定训练样本的类型、收集训练样本集、确定学习函数的输入特征表示、确定学习函数的结构和对应的学习算法、完成整

    08

    IJCAI Oral:弱监督实现精确目标检测,上交大提出协同学习框架

    ---- 新智元专栏 作者:上海交通大学未来媒体网络协同创新中心 【新智元导读】训练一个高准确率的检测模型需要大量精细标注的图片数据,其成本很高。本文提出了一种弱监督协同学习框架,仅使用粗略标签的图片训练目标检测模型,测试结果显示其定位精确率和检测准确率均显著优于目前最先进的方法。 目标检测是机器视觉的基本问题,在视频监控、无人驾驶等场景都有广泛应用。随着深度学习的兴起,近年来涌现了大量优秀的目标检测模型。然而,训练一个高准确率的检测模型需要大量的以包围框形式精细标注的图片数据作为模型监督条件,需要

    01
    领券