作为当今快速发展的技术之一,低代码平台为开发人员提供了更高效、更简便的工具和方法,以快速构建和部署应用程序。现在市面上的大部分低代码平台可以满足大部分日常的需求,但对于一些定制化并且低代码平台无法实现的需求,如何解决呢?最常见的方法就是对低代码平台的功能进行扩展(低代码插件)。因此,今天小编将以葡萄城的企业级低代码开发平台——活字格为例为的大家介绍如何使用C#编写一个低代码插件。
评估SNP遗传力有两种方法LDSC和GREML, 本文介绍下GREML评估遗传力的方法。在GCTA软件中,其核心就是如下所示的线性混合模型
期望也就是平均值,是一个数值,反应的是随机变量平均取值的情况,期望也叫做加权平均。在信号中代表直流分量。
身处信息时代之中,我们最能明显感受到的一点就是密集数据大量爆发,人们积累的数据也越来越多。这些庞杂的数据出现在一起,传统使用的很多数据记录、查询、汇总工具并不能满足人们的需求。更有效的将这些大量数据处理,让计算机听懂人类需要的数据效果,从而形成更加自动化、智能的数据处理方式。
所谓反向传播,与之相对的就是正向传播。神经网络执行是从前到后的,这是正向传播,而为神经网络的各个节点求导,则需要从最后一个输出节点向前推导,因为顺序是从后往前的,所以成为反向传播。
PKS的确能屈能伸,虽说复杂控制是咱的强项,普通计算只是小菜一碟,但做的也是有板有眼,丝毫不含糊。
导语:本章将为读者介绍基于深度学习的生成模型。前面几章主要介绍了机器学习中的判别式模型,这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像具备的性质,而输出是性质对应的图像。这种生成模型相当于构建了图像的分布,因此利用这类模型,我们可以完成图像自动生成(采样)、图像信息补全等工作。另外,小编Tom邀请你一起搞事情! 在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多
很久没有写有关爬虫相关的内容了,今天给大家分享一下最近工作中遇到的一个与JavaScript相关的数据采集案例。
本章将为读者介绍基于深度学习的生成模型。这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像
编者按:本书节选自图书《深度学习轻松学》第十章部分内容,书中以轻松直白的语言,生动详细地介绍了深层模型相关的基础知识,并深入剖析了算法的原理与本质。同时还配有大量案例与源码,帮助读者切实体会深度学习的核心思想和精妙之处。 又双叒叕赠书啦!请关注文末活动。 本章将为读者介绍基于深度学习的生成模型。前面几章主要介绍了机器学习中的判别式模型,这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像具备的性质,而
来源:1024深度学习 作者:冯超 本文长度为2600字,建议阅读6分钟 本章介绍基于深度学习思想的生成模型——VAE和GAN,以及GAN的变种模型。 在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多挑战,而深度学习的出现帮助他们解决了不少问题。本章介绍基于深度学习思想的生成模型——VAE和GAN,以及GAN的变种模型。 VAE 本节将为读者介绍基于变分思想的深度学习的生成模型——Variational autoencoder,简称VAE。 1.1 生成式模型 前
意外从天而降,未来如何演变? 利用概率预测长期结果,利用期望度量结果的确定性。 随机变量 随机变量是一个可以等于一系列数值的变量,而这一系列数值中的每一个值都与一个特定概率相关联。 离散变量,这里的变
机器学习实战读书笔记 - 03 - 决策树 解决的问题 一个经典的例子是猜人游戏。参与游戏的一方默想一个人名,另一方向他提问题,最终猜出这个人名。 决策树属于监督学习,可以处理上面的分类问题。这个问题的特点是: 训练数据全面,计算数据被训练数据覆盖了。 训练数据是标称型数据,数值型数据必须离散化。 决策树算法是找到一个优化的决策路径(决策树),使得每次分类尽可能过滤更多的数据,或者说问的问题尽量少。 决策树算法可以用来优化一些知识系统,帮助用户快速找到答案。 优势 使用决策树可以更好地理解数据的内在含义
熵的概念比较晦涩难懂。但是,我们还是想最大化的用容易理解的语言将它说明白。尽量不要让这部分知识成为大家学习的绊脚石。
均值描述的是样本集合的中间点,它告诉我们的信息是有限的;而方差给我们描述的是样本集合的各个样本点到均值之间的平均距离。
在信贷领域中建立风控模型是为了找出可能会逾期的客户,根据逾期的可能性和资金的松紧程度选择是否放贷。
本文由博主经过查阅网上资料整理总结后编写,如存在错误或不恰当之处请留言以便更正,内容仅供大家参考学习。
在介绍如何使用贝叶斯概率公式计算后验概率之前,先回顾一下概率论与数理统计中的条件概率和全概率公式:
这是《机器学习-原理、算法与应用》这是机器学习与深度学习习题的第二部分,为《机器学习-原理,算法与应用》一书编写,二者配合使用。习题集的绝大部分题目都可以在此书中找到答案。同时也可以用作高校相关专业的机器学习,深度学习课程习题集。后续我们将给出最后一部分,以及整个习题集的完整答案。
“蓝色字” 可关注我们! 作者:王陆勤 意外从天而降,未来如何演变? 利用概率预测长期结果,利用期望度量结果的确定性。 随机变量 随机变量是一个可以等于一系列数值的变量,而这一系列数值中的每一个值都与
Fisher信息量提供了一种衡量随机变量所包含的关于其概率分布中的某个参数(如均值)的信息量的方法。
数据挖掘中,特征选择的过程就是计算特征与样本观测结果的相关性。卡方检验和互信息是用得较多的计算方法。
关于相似性以及文档特征、词特征有太多种说法。弄得好乱,而且没有一个清晰逻辑与归类,包括一些经典书籍里面也分得概念模糊,所以擅自分一分。
相关分析(Analysis of Correlation)是网站分析中经常使用的分析方法之一。通过对不同特征或数据间的关系进行分析,发现业务运营中的关键影响及驱动因素。并对业务的发展进行预测。本篇文章将介绍5种常用的分析方法。在开始介绍相关分析之前,需要特别说明的是相关关系不等于因果关系。
原文PDF:http://www.tensorinfinity.com/paper_170.html
深度学习还没学完,怎么图深度学习又来了?别怕,这里有份系统教程,可以将0基础的你直接送到图深度学习。还会定期更新哦。
【导读】专知于11月24日推出胡老师的基于信息理论的机器学习报告系列教程,大家反响热烈,胡老师PPT内容非常翔实精彩,是学习机器学习信息理论不可多得的好教程,今天是胡老师为教程的第三部分(为第四章内容)进行详细地注释说明,请大家查看! ▌概述 ---- 本次tutorial的目的是,1.介绍信息学习理论与模式识别的基本概念与原理;2.揭示最新的理论研究进展;3.从机器学习与人工智能的研究中启发思索。由于时间有限,本次只是大概介绍一下本次tutorial的内容,后续会详细介绍每一部分。 胡老师的报告内容分为三
箱线图(Box Plot):是由一组数据的最大值(maximum),最小值(minimum),中位数(median),两个四分位数(quartiles)这五个特征值绘制而成的,它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。
连续特征离散化可以使模型更加稳健,比如当我们预测用户是否点击某个商品时,一个点击该商品所属类别下次数为100次和一个点击次数为105次的用户可能具有相似的点击行为,有时候特征精度过高也可能是噪声,这也是为什么在LightGBM中,模型采用直方图算法来防止过拟合。
本文介绍的方法FwFM,主要来自上面的两篇文章,分别为:《Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising》和《A Sparse Deep Factorization Machine for E icient CTR prediction》。
有理数是整数和分数的集合,有理数的小数部分是有限或者无限循环的数;小数部分为无限不循环的数为无理数;
首先要知道,很多时候PID算法都是通过一个控制器进行编程实现,可以是一台计算机,也可以是一个微处理器,但不管怎样,他们处理的信号都已经不再是模拟信号,而是对模拟信号进行离散化处理的数字信号,因此该种信号的PID控制属于一种采样控制,也就是说它是根据不同采样时刻的偏差来计算最终的控制量。
决策树是最简单的机器学习算法,它易于实现,可解释性强,完全符合人类的直观思维,有着广泛的应用。决策树到底是什么?简单地讲,决策树是一棵二叉或多叉树(如果你对树的概念都不清楚,请先去学习数据结构课程),它对数据的属性进行判断,得到分类或回归结果。预测时,在树的内部节点处用某一属性值(特征向量的某一分量)进行判断,根据判断结果决定进入哪个分支节点,直到到达叶子节点处,得到分类或回归结果。这是一种基于if-then-else规则的有监督学习算法,决策树的这些规则通过训练得到,而不是人工制定的。
在SIGAI之前的公众号文章“反向传播算法推导-全连接神经网络”中,我们推导了全连接神经网络的反向传播算法。其核心是定义误差项,以及确定误差项的递推公式,再根据误差项得到对权重矩阵、偏置向量的梯度。最后用梯度下降法更新。卷积神经网络由于引入了卷积层和池化层,因此情况有所不同。在今天这篇文章中,我们将详细为大家推导卷积神经网络的反向传播算法。对于卷积层,我们将按两条路线进行推导,分别是标准的卷积运算实现,以及将卷积转化成矩阵乘法的实现。在文章的最后一节,我们将介绍具体的工程实现,即卷积神经网络的卷积层,池化层,激活函数层,损失层怎样完成反向传播功能。
1 . 属性选择方法 : 树根属性选择的方法很多 , 这里介绍一种常用的方法 , 信息增益 ;
聚类分析的实质:是建立一种分类方法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类。这里所说的类就是一个具有相似性的个体的集合,不同类之间具有明显的区别。 聚类分析的特点:聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。
深度学习有哪些神经网络 一般来说,训练深度学习网络的方式主要有四种: 监督学习(supervised learning) 无监督学习 (unsupervised learning) 半监督学习(semi-supervised learning) 强化学习(reinforcement learning) 监督学习 是指用已经标记好的数据,做训练模型来预测新数据的类别。 无监督学习 是指不需要提前对数据进行标记,直接对它们进行聚类。 半监督学习 是指同时用了有监督学习的方法和无监督学习的方法。准确来说是同时用来
Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。
今天遇到朋友发来的一个ui图,询问我如何实现下图这样的效果【vue项目】,(听说是类似LED灯的展示效果),于是便有了今天的小demo,要实现一个类似下图的动效,上面的灯会一直重复滚动,但是这个并不是什么难点,主要在于如何实现这种平滑的曲线,日常我们的开发的div在我们的脑海中通常就是一个网格状,涉及到平滑曲线的往往是图表,于是我们需要找一个方案来完成这种布局(非真实ui图,是完成之后的效果)
在之前的几篇文章中曾讲述过主成分分析的数学模型、几何意义和推导过程(PS:点击即可阅读),这里面就要涉及到协方差矩阵的计算,本文将针对协方差矩阵做一个详细的介绍,其中包括协方差矩阵的定义、数学背景与意义以及计算公式的推导。
两样本的孟德尔随机化研究只需要基于gwas summary数据,就可以研究暴露因素和结局变量之间的因果关系,是最广泛使用的研究手段之一。要保证MR研究结果的可靠性,需要在分析的各个环节进行有效的质控。
【导读】上一次专知推出基于信息理论的机器学习报告,大家反响热烈,今天是胡老师提供的第二部分(为第三章内容)进行详细地注释说明,请大家查看! ▌概述 ---- 本次tutorial的目的是,1.介绍信息学习理论与模式识别的基本概念与原理;2.揭示最新的理论研究进展;3.从机器学习与人工智能的研究中启发思索。由于时间有限,本次只是大概介绍一下本次tutorial的内容,后续会详细介绍每一部分。 胡老师的报告内容分为三个部分: 引言(Introduction) 信息理论基础(Basics of Informati
本文是SIGAI公众号文章作者编写的机器学习和深度学习习题集(上),是《机器学习-原理、算法与应用》一书的配套产品。此习题集课用于高校的机器学习与深度学习教学,以及在职人员面试准备时使用。为了帮助高校更好的教学,我们将会对习题集进行扩充与优化,并免费提供给高校教师使用。对此感兴趣的在校教师和学生可以通过向SIGAI微信公众号发消息获取。习题集的下半部分、所有题目的答案将在后续的公众号文章中持续给出。
概要 用统计指标对定量数据进行统计描述,常从【集中趋势】和【离中趋势】两个方面进行分析。 平均水平的指标是对个体【集中趋势】的度量,使用最广泛的是均值和中位数; 反映变异程度的指标则是对个体【离开平均水平的度量】,使用较为广泛的指标是标准差(方差)、四分位间距。 1、集中趋势的度量 (1)均值:均值为所以数据的平均值。若计算n个观察数据的平均数,计算公式为:
几乎所有机器学习算法在训练或预测时都归结为求解最优化问题,如果目标函数可导,在问题变为训练函数的驻点。通常情况下无法得到驻点的解析解,因此只能采用数值优化算法,如梯度下降法,牛顿法,拟牛顿法。这些数值优化算法都依赖于函数的一阶导数值或二阶导数值,包括梯度与Hessian矩阵。因此需要解决如何求一个复杂函数的导数问题,本文讲述的自动微分技术是解决此问题的一种通用方法。关于梯度、Hessian矩阵、雅克比矩阵,以及梯度下降法,牛顿法,拟牛顿法,各种反向传播算法的详细讲述可以阅读《机器学习与应用》,清华大学出版社,雷明著一书,或者SIGAI之前的公众号文章。对于这些内容,我们有非常清晰的讲述和推导。
本文是机器学习和深度学习习题集答案的第2部分,也是《机器学习-原理、算法与应用》一书的配套产品。此习题集可用于高校的机器学习与深度学习教学,以及在职人员面试准备时使用。
跳出率指的是只访问了入口页面(例如网站首页)就离开的访问量与所产生总访问量的百分比。跳出率计算公式:跳出率=访问一个页面后离开网站的次数/总访问次数。
for e in range(1,10): # 定义for循环中的变量e 为:range()函数生成1到10的自然数 for ee in range(1,e+1): # 定义内循环中的变量 ee 为 e+1 的范围,此时的e是受到for外循环遍历为1,不再是一个范围 eee=e*ee # 在内循环中定义变量eee的计算公式 print('{0}x{1}={2}\t'.format(e,e
作者:Rachel Zhang 百度深度学习实验室RD,关注计算机视觉,机器学习,算法研究,人工智能, 移动互联网等学科和产业. 在聚类中我们经常用到EM算法(i.e. Expectation - Maximization)进行参数估计, 在该算法中我们通过函数的凹/凸性,在expectation 和maximization两步中迭代地进行参数估计,并保证可以算法收敛,达到局部最优解。 由于公式实在太多,这里我就手写了……主要讲了以下几个部分: 1. 凸集,凸函数,凹集,凹函数的概念 2.
领取专属 10元无门槛券
手把手带您无忧上云