元素定义表格行, 元素定义表头, | 元素定义表格单元。
为了让表格更美观,我们会用到:border,colspan,rowspan,align,bgcolor 等来美化表格,具体在本文都有讲解;
五、核心概念
5.1.表引擎(Engine)
表引擎决定了数据在文件系统中的存储方式,常用的也是官方推荐的存储引擎是MergeTree系列,如果需要数据副本的话可以使用ReplicatedMergeTree系列,相当于MergeTree的副本版本。读取集群数据需要使用分布式表引擎Distribute。
5.2.表分区(Partition)
表中的数据可以按照指定的字段分区存储,每个分区在文件系统中都是都以目录的形式存在。常用时间字段作为分区字段,数据量大的表可以按照小时分区,数据量小的表可以在按照天分区或者月分区,查询时,使用分区字段作为Where条件,可以有效的过滤掉大量非结果集数据。
5.3.分片(Shard)
一个分片本身就是ClickHouse一个实例节点,分片的本质就是为了提高查询效率,将一份全量的数据分成多份(片),从而降低单节点的数据扫描数量,提高查询性能。
5.4. 复制集(Replication)
简单理解就是相同的数据备份,在CK中通过复制集,我们实现保障了数据可靠性外,也通过多副本的方式,增加了CK查询的并发能力。这里一般有2种方式:(1)基于ZooKeeper的表复制方式;(2)基于Cluster的复制方式。由于我们推荐的数据写入方式本地表写入,禁止分布式表写入,所以我们的复制表只考虑ZooKeeper的表复制方案。
5.5.集群(Cluster)
可以使用多个ClickHouse实例组成一个集群,并统一对外提供服务。
六、主要表引擎深入解析
6.1.TinyLog
最简单的表引擎,用于将数据存储在磁盘上,每列都存储在单独的压缩文件中,写入时,数据附加到文件末尾.
缺点:(1)没有并发控制(没有做优化,同时写会数据会损坏,报错) (2)不支持索引 (3)数据存储在磁盘上
优点:(1)小表节省空间 (2)数据写入,只查询,不做增删改操作创建表:
create table stu1(id Int8, name String)ENGINE=TinyLog
6.2. Memory
内存引擎,数据以未压缩的原始形式直接保存在内存中,服务器重启,数据会消失,读写操作不会相互阻塞,不支持索引。建议上限1亿行的场景。优点:简单查询下有非常高的性能表现(超过10G/s)
创建表:
create table stu1(id Int8, name String)ENGINE=Merge(db_name, 'regex_tablename')
6.3.Merge
本身不存储数据,但可用于同时从任意多个其他的表中读取数据,读是自动并行的,不支持写入,读取时,那些真正被读取到数据的表的索引(如果有的话)会被占用,默认是本地表,不能跨机器。参数:一个数据库名和一个用于匹配表名的正则表达式
创建表:
create table t1(id Int8, name String)ENGINE=TinyLog
create table t2(id Int8, name String)ENGINE=TinyLog
create table t3(id Int8, name String)ENGINE=TinyLog
create table t (id UInt16, name String)ENGINE=Merge(currentDatabase(), ‘^t’)
6.4.MergeTree
ck中最强大的表引擎MergeTree(合并树)和该系列(*MergeTree)中的其他引擎。使用场景:有巨量数据要插入到表中,高效一批批写入数据片段,并希望这些数据片段在后台按照一定规则合并。相比在插入时不断修改(重写)数据进行存储,会高效很多。优点:(1)数据按主键排序 (2)可以使用分区(如果指定了主键)(3)支持数据副本 (4)支持数据采样
创建表:
ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate, intHash32(UserID)) SAMPLE BY intHash32(UserID) SETTINGS index_granularity=8192 |