中秋节快到了,掘金社区一如既往十分贴心的在这种有意义节日里推出了社区周边的礼盒,像之前的端午粽子礼盒,这次推出了中秋月饼礼盒。
前几期小编给大家总结了JavaScript的基础知识,为我们后期深入学习JS打下了一定的基础。在后面的几期文章当中我们要来进行JS小游戏的开发,但是开发小游戏的前提我们需要掌握Math对象,它是开发小游戏必不可少的一个知识点。 本文内容概要: 1 为何要学习Math对象 2 Math对象是什么 3 使用random()方法产生随机数 4 使用Math对象的方法进行取整 5 根据范围产生随机数 6 课程小结 7 课后作业 1 为何要学习Math对象 在生活中我们可能会遇到“随机抽签”、“随机点名”、“抽奖”等
早在2018年和2019年,SIGAI微信公众号先后发布过“机器学习算法地图”,“深度学习算法地图”,对机器学习、深度学习的知识脉络进行了梳理与总结,帮助大家建立整体的知识结构。这两张知识结构图的纸质版发行量和电子版下载量已经超过10万,有不少高校的机器学习课程还特地讲到了这两张图。在今天这篇文章里,我们将对机器学习的数学知识进行总结,画出类似的结构图。由于数学知识体系太过庞大,因此我们分成了整体知识结构图,以及每门课的知识结构图。
相对熵又叫KL散度,也叫做信息增益,如果我们对于同一个随机变量,有两个单独的概率分布和,我们可以用KL散度来衡量这两个分布的差异。
本篇译自:https://medium.com/@abdelmatyne5/uuid-vs-crypto-randomuuid-vs-nanoid
Mock.mock(rul?,rtype?,template|function(options))
2014年Ian Goodfellow在研究使用生成模型自动生成图片的过程中,发现传统神经网络方法效果并不理想,随后缘于一个偶然的灵感,发明了生成对抗网络(GAN),在其实验数据的图片生成上取得了非常理想的效果。从此,这种全新的技术作为训练生成模型的新框架,迅速风靡人工智能各个领域并取得不少突破。
导语:本章将为读者介绍基于深度学习的生成模型。前面几章主要介绍了机器学习中的判别式模型,这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像具备的性质,而输出是性质对应的图像。这种生成模型相当于构建了图像的分布,因此利用这类模型,我们可以完成图像自动生成(采样)、图像信息补全等工作。另外,小编Tom邀请你一起搞事情! 在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多
基 本 思 路:1.既然要控制生成的随机数个数countNum,那么可以使用for循环来控制。
本章将为读者介绍基于深度学习的生成模型。这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像
编者按:本书节选自图书《深度学习轻松学》第十章部分内容,书中以轻松直白的语言,生动详细地介绍了深层模型相关的基础知识,并深入剖析了算法的原理与本质。同时还配有大量案例与源码,帮助读者切实体会深度学习的核心思想和精妙之处。 又双叒叕赠书啦!请关注文末活动。 本章将为读者介绍基于深度学习的生成模型。前面几章主要介绍了机器学习中的判别式模型,这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像具备的性质,而
来源:1024深度学习 作者:冯超 本文长度为2600字,建议阅读6分钟 本章介绍基于深度学习思想的生成模型——VAE和GAN,以及GAN的变种模型。 在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多挑战,而深度学习的出现帮助他们解决了不少问题。本章介绍基于深度学习思想的生成模型——VAE和GAN,以及GAN的变种模型。 VAE 本节将为读者介绍基于变分思想的深度学习的生成模型——Variational autoencoder,简称VAE。 1.1 生成式模型 前
小巧. 130 bytes (已压缩和 gzipped)。 没有依赖。 Size Limit 控制大小。
很多场景需要考虑数据分布的相似度/距离:比如确定一个正态分布是否能够很好的描述一个群体的身高(正态分布生成的样本分布应当与实际的抽样分布接近),或者一个分类算法是否能够很好地区分样本的特征(在两个分类下的数据分布的差异应当比较大)。
在GAN的相关研究如火如荼甚至可以说是泛滥的今天,一篇新鲜出炉的arXiv论文Wassertein GAN 却在 Reddit 的 Machine Learning 频道火了,连Goodfellow都在帖子里和大家热烈讨论,这篇论文究竟有什么了不得的地方呢?
文章导读:这篇文章不是为了全面深入的介绍循环神经网络(recurrent neural networks),而是为那些没有任何机器学习(machine learning)背景知识的读者提供一种思路,意在展示艺术家和设计师运用简单的Javascript和p5.js库构造预训练神经网络、进而创作出交互式数字作品的过程。 引言 近年来,对于那些富有创造性的群体来说,机器学习已经成为一种流行的工具。风格迁移(style transfer)、t-sne算法、自编码器(autoencoders)、生成对抗网络(
总的来说,该前端面试覆盖的内容还是相当广的,而且非常注重基础(这应该是大厂的一贯风格)。计算机基础课程操作系统、数据结构、计算机网络必须非常扎实,然后前端css、js、框架原理源码和node都要熟悉或者有一定了解,还要对前端的新发展有一定了解。
在前端开发中,很大一部分工作都是将后台数据获取到后展示在前端界面上。如果接口是现成的,这个过程还相对容易一些,但是如果接口的开发和前端开发是同时进行的,在仅仅有接口文档并无测试环境的情况下,前端开发者就要痛苦了,所得非所见的盲写方式不但效率低下,也有很大的遗漏风险。如果我们有办法自己根据接口文档模拟这些数据,那开发过程中的体验就会好很多了。幸运的是,通过node.js,express和mock.js,我们可以非常容易的进行数据Mock。
支持现代浏览器、IE 使用 Babel、Node.js 和 React Native。
数据决定了任务的上限,模型方法决定达到上限的能力。在这里想借助信息熵的一些概念来对数据的重要性做一些分析,将数据的分布差异度量出来,并据此得到特征对于分类的重要性度量。 对于特征的重要性的分析不适合放到特征特别多的情况下,因为往往特征之间是不独立的,所以去统计大量的特征组合的分布是一件很费时间的事情,但是本文的方法对于单个特征或者中少量的特征还是可以尝试的。
其实沙画的笔触模拟是非常复杂的,本篇我们来实现一个非常简单的笔触形式,也就是通过randomGaussian()来模拟沙子的笔触分布情况。
最近在做需求的时候,有个管理端接口需要在调用的时候传递一个无符号的32位整形文件ID,也就是0 ~ 4294967295之间的数字,每次调用接口这个文件ID不能重复。
在数学中,矩阵是以行和列排列的数字,符号或表达式的矩形阵列,任何矩阵都可以通过相关字段的标量乘以元素。矩阵的主要应用是表示线性变换,即f(x)= 4 x等线性函数的推广。例如,旋转的载体在三维空间是一个线性变换,这可以通过一个表示旋转矩阵 [R :如果v是一个列向量描述(只有一列的矩阵)的位置在空间中的点,该产品器Rv是列矢量描述旋转后该点的位置。两个变换矩阵的乘积是表示两个变换组成的矩阵。矩阵的另一个应用是线性方程组的解。如果矩阵是方形的,可以通过计算其行列式来推断它的一些性质。例如,当且仅当其行列式不为
代码混淆(obfuscation)和代码反混淆(deobfuscation)在爬虫、逆向当中可以说是非常常见的情况了,初学者经常问一个问题,类似 _0x4c9738 的变量名怎么还原?从正常角度来说,这个东西没办法还原,就好比一个人以前的名字叫张三,后来改名叫张四了,除了张四本人和他爸妈,别人根本不知道他以前叫啥,类似 _0x4c9738 的变量名也一样,除了编写原始代码的人知道它原来的名称是啥以外,其他人是没办法知道的。
在数学中,矩阵是以行和列排列的数字,符号或表达式的矩形阵列,任何矩阵都可以通过相关字段的标量乘以元素。矩阵的主要应用是表示线性变换,即f(x)= 4 x等线性函数的推广。例如,旋转的载体在三维空间是一
几乎所有的机器学习算法都归结为求解最优化问题。有监督学习算法在训练时通过优化一个目标函数而得到模型,然后用模型进行预测。无监督学习算法通常通过优化一个目标函数完成数据降维或聚类。强化学习算法在训练时通过最大化奖励值得到策略函数,然后用策略函数确定每种状态下要执行的动作。多任务学习、半监督学习的核心步骤之一也是构造目标函数。一旦目标函数确定,剩下的是求解最优化问题,这在数学上通常有成熟的解决方案。因此目标函数的构造是机器学习中的中心任务。
本人平时会在放假期间写一些小程序拿去出售,个人爱好使然,那么前端代码混淆十分重要(无法加密,加密意味着需要解密,让浏览器给你解密么)。
论文在第二部分先提出了贪婪算法框架,如下截图所示: 接着根据原子选择的方法不同,提出了SWOMP(分段弱正交匹配追踪)算法,以下部分为转载《压缩感知重构算法之分段弱正交匹配追踪(SWOMP)》 分段弱
写代码首先应该先关注其正确性,如果正确性都保证不了,会造成业务逻辑失败,上线后会引起客户投诉。这一说法听起来有些滑稽,作为前端开发工程师怎么会提交错误的代码上线呢?但在实际开发中,我们可能会写出错误的代码而不自知。比如:洗牌算法的陷阱。
上回说到,我再次遇到这个消失了十多年的人后竟然发现她成为了一名测试工程师。不过显然她混的并不好,因为据我所知,当年她是没有考上大学的,就算在高中时代,她的学习成绩也并不好,整天旷课,考大学失败后,她就像突然消失了一样,这一晃,便是十几年。
以下仅是我对于这个比赛的思考过程,可能是拿高分的技巧,但我并没有因此拿高分,本人算法水平有限大佬勿喷,对文章中的问题欢迎指出。
生成对抗网络(GAN,Generative adversarial network)自从2014年被lan Goodfellow提出以来,掀起了一股研究热潮。GAN由生成器和判别器组成,生成器负责生成样本,判别器负责判断生成器的样本是否为真。生成器要尽可能迷惑判别器,而判别器要尽可能区分生成器生成的样本和真实样本。
这几天忙着搭一个社区,前端主要vue+antd,后端使用express+MongoDB。 在注册用户的环节,如果前端没有填写用户名,后端就给他随机生成一个。
Here is a list of components that are needed for the successful machine learning research and development, and examples of popular libraries and tools of the type:
在前一篇文章中,我们展示了如何借助 SOTA 项目探索机器翻译最前沿的进展。我们可以发现,拥有最顶尖效果的模型,通常都有非常美妙的想法,这对于理解整个任务或领域非常重要。但是如果从另一个角度,探讨这些顶尖模型的关系与演化,我们能获得另一种全局体验。
按照我们正常的抽奖的最简单做法,一般是把工号写到一个球上面,摇 n 次,然后每次摇出1个号,该号码即为中奖号码,同时将该球拿出去,重复 n 次。
简单来讲,就是API (也就是服务器接口)没有写好前提下,前端无法进行调试,Mock Server 就是用来模拟Api接口返回JSON数据的服务!
1 个月前和另外二位小伙伴一起参加了一个 AI 的比赛。虽然比赛结果不理想,至少我享受到了编程过程中的乐趣。从这次比赛中让我认识到 Go 除了写服务端,写游戏模拟器,写 AI 都是拿手好戏。最近微信跳一跳的辅助,冲顶大会的辅助基本也都是 Go 写的。于是我更坐不住了,也写一个来纪念我们那次比赛。
有几张牌张牌,用js来进行乱序排列,要保持公平性(也就是真的是乱序排列,真的乱!)。
在机器学习或者深度学习领域,生成模型具有非常广泛的应用,它可以用于测试模型的高维概率分布的表达能力,可以用于强化学习、半监督学习,可以用于处理多模输出问题,以及最常见的产生“真实”数据问题。
最常见的评价GAN的方法就是主观评价。主观评价需要花费大量人力物力,且存在以下问题:
今天,我本来是想写关于福利彩票的随机数相关内容的,素材数据我都备好了,有福彩“15选5”、福利“6+1”、“七乐彩”、“3D”、“福利双色球”等等,但是考虑到放进来就太长了文章,所以先阉割一部分,等后面深入研究好以后再写结论吧。
机器之心原创 作者:蒋思源 本文是机器之心第二个 GitHub 实现项目,上一个 GitHub 实现项目为从头开始构建卷积神经网络。在本文中,我们将从原论文出发,借助 Goodfellow 在 NIPS 2016 的演讲和台大李弘毅的解释,完成原 GAN 的推导、证明与实现。 本文主要分四部分,第一部分描述 GAN 的直观概念,第二部分描述概念与优化的形式化表达,第三部分将对 GAN 进行详细的理论推导与分析,最后我们将实现前面的理论分析。 GitHub项目地址:https://github.com/jiq
这篇文章不是对循环神经网络的综合概述。它适用于没有任何机器学习背景的读者。其目的是向艺术家和设计师展示如何使用预先训练的神经网络——使用简单的Javascript和p5.js库来制作交互式数字作品。
来源:信息网络工程研究中心本文共1000字,建议阅读5分钟本文带你了解GAN、DCGAN、WGAN、SRGAN。 GAN 生成网络接收一个随机噪声,生成逼真图像; 判别网络接收一个图像,生成该图像是真实的概率(0~1); GAN网络中存在两个不同的网络,训练方式采用的是对抗训练方式,其中G的梯度更新信息来自于判别器D,而不是来自数据样本。 GAN不适合处理离散形式的数据,比如文本。 使用JS散度作为距离公式 DCGAN DCGAN(deep convolutional generative adversa
在程序开发中,程序员每天都要和 Bug 打交道,对新手程序员而言,debug 是一件非常让人头疼的事情。好不容易写完一段代码,一运行,全是红色,找了好几圈,被几个符号累瞎了眼。
雷锋网 AI 科技评论按,2019 年 3 月21 日,google 发布了他们有史以来第一个人工智能 Doodle ,以庆祝世界著名的德国作曲家和音乐家——巴赫的生日!
第一件事是确定方块序列怎么生成的,看了下js有很友好的给出源文件地址,随机数生成核心: return (v * a + C) % M;`,种子也是固定的,就放弃了RL的想法。
在机器学习与深度学习中需要大量使用数学知识,这是给很多初学带来困难的主要原因之一。此前SIGAI的公众号已经写过“学好机器学习需要哪些数学知识”的文章,由于时间仓促,还不够完整。今天重新整理了机器学习与深度学习中的主要知识点,做到精准覆盖,内容最小化,以减轻学习的负担同时又保证学习的效果。这些知识点是笔者长期摸索总结出来的,相信弄懂了这些数学知识,数学将不再成为你学好机器学习和深度学习的障碍。
本文列出的数学知识点已经写成了《机器学习的数学教程》,以后有机会的话可能会出版,以帮助大家学习。
领取专属 10元无门槛券
手把手带您无忧上云