首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何用ICA去除脑电信号中的干扰?

    《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》   独立成分分析(ICA)已经成为脑电信号预处理,特别是去除干扰信号过程中一个标准流程。ICA是一种盲源算法,其通过一定的方法把信号分解成相互独立的多个源信号。尽管ICA算法为研究者去除脑电信号中的干扰源提供了便利,但是在具体运用时带有一定的主观性,因此需要一定的经验才能够鉴别出干扰成分。当然,目前也有一些自动化鉴别干扰成分插件,但是这些插件也只能提供一个参考而已,最后还需要自己的判定。这里,笔者总结一些典型噪声成分的特点,希望对各位朋友有所帮助。    EEGlab中植入了最常用的ICA算法,建议采用EEGlab运行ICA。ICA跑完之后,可以画出每个成分的拓扑图、功率谱曲线等,我们可以依据这些信息鉴别出噪声成分,进而把这些成分去掉。 1.眨眼   眨眼引起的干扰最主要特点是:独立成分的拓扑图主要分布于前端眼部电极,如图1所示。此外,该成分的功率谱曲线没有明显的peak。

    00

    BACON:一种脑激活和变化的反向推断工具

    在过去的几十年里,强大的基于核磁共振成像的方法已经被开发出来,这些方法产生了基于体素的大脑活动图和与不同情况相关的解剖变化。对于功能性或结构性MRI数据,正向推断试图确定哪些区域涉及到心理功能或大脑紊乱。正向推理的一个主要缺点是它缺乏特异性,因为它表明大脑区域的参与对被调查的过程/条件不是特定的。因此,需要一种不同的方法来确定特定的大脑激活或改变模式在多大程度上与心理功能或大脑病理相关。在本研究中,我们提出了一种名为BACON(贝叶斯因子建模)的新工具,用于对功能和结构神经成像数据进行反向推理。BACON实现了贝叶斯因子,并使用激活似然估计衍生图来获得关于特定心理功能或大脑病理特异性证据的后验概率分布。

    01

    基于EEG功能连接的多变量模式分析:抑郁症的分类研究

    抑郁症(depressive disorder, MDD)是一种已经影响到全球超过3.5亿人的常见精神疾病,其主要特征是持久和严重的情绪低落或躁狂。患者很难控制自己的情绪,表现出情绪低落,从而降低了患者对所有活动的兴趣。到目前未知,抑郁症的病理生理机制仍不十分清楚。目前,临床上对抑郁症的诊断主要基于临床医生对患者的问卷量表调查,但是这种方法有一定的主观性。因此,研究者试图运用多种神经成像技术如EEG、MRI、MEG、PET等来实现对抑郁症的客观评价和诊断。在这些成像技术中,EEG似乎具有得天独厚的优势,如设备价格低、时间分辨率超高等。运用EEG技术,研究者发现抑郁症患者的不同频段震荡活动以及多个脑区之间的功能连接网络等表现出不用于正常人的特征。 近些年来,随着机器学习的兴起,机器学习结合抑郁症的EEG信号特征用于抑郁症的分类研究越来越受到研究者的青睐。尽管静息态EEG研究已经证实抑郁症和健康人的脑功能网络存在统计学差异,但是,到目前为止,基于机器学习的多变量模式分析能否捕获整体的EEG功能连接模式以实现高准确率区分抑郁症患者与正常对照者还尚未可知。近期,兰州大学相关研究团队在《IEEE Access》杂志发表题为《Multivariate pattern analysis of EEG-based functional connectivity: a study on the identification of depression》的研究论文,对上述问题进行了研究。本文对该项研究进行解读。

    00
    领券