首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    理解编辑距离

    顾名思义,编辑距离(Edit distance)是一种距离,用于衡量两个字符串之间的远近程度,方式是一个字符串至少需要多少次基础变换才能变成另一个字符串,可应用在拼写检查、判断 DNA 相似度等场景中。...根据可操作的基础变换不同,可分为以下几种: 莱文斯坦距离(Levenshtein distance):最常见的编辑距离,基础变换包括插入、删除和替换。...但是需要注意一点的是,当每种变换发生时,产生的距离(或者称为代价)并不一定是 1,例如斯坦福大学关于最小编辑距离的课件中,一次替换产生的距离就可能是 2。...Weighted Edit Distance,即加权编辑距离,这其实是在初始化和后续计算时加入了一些权重作为先验,一步操作产生的距离不再是 1 或者 2。 其他变种…… 这些等有时间再说吧。...Minimum Edit Distance Edit distance Similarity Search - The String Edit Distance - Nikolaus Augsten 编辑距离

    1.3K30

    编辑距离

    https://blog.csdn.net/ghsau/article/details/78903076 定义 编辑距离又称Leveinshtein距离,是由俄罗斯科学家...编辑距离是计算两个文本相似度的算法之一,以字符串为例,字符串a和字符串b的编辑距离是将a转换成b的最小操作次数,这里的操作包括三种: 插入一个字符 删除一个字符 替换一个字符 举个例子,kitten和sitting...的编辑距离是3,kitten -> sitten(k替换为s) -> sittin(e替换为i) -> sitting(插入g),至少要做3次操作。...),一个字符串的长度为0,编辑距离自然是另一个字符串的长度当min(i,j)=0时,lev_{a,b}(i,j)=max(i,j),一个字符串的长度为0,编辑距离自然是另一个字符串的长度 当ai=bj时...; } leftTop = nextLeftTop; } } return d[d.length - 1]; } 应用 编辑距离是基于文本自身去计算

    65330

    序列比对(25)编辑距离

    本文介绍两个字符串的编辑距离并给出代码。 编辑距离 ?...编辑距离的求解过程和全局比对是十分相似的(关于全局比对,可以参见前文《序列比对(一)全局比对Needleman-Wunsch算法》),都需要全部符号参与比对,都允许插入、缺失和错配。...所以,编辑距离可以用动态规划算法求解,其迭代公式是: ? 效果如下: ?...编辑距离与最长公共子序列 在只允许插入和缺失而不允许错配的情况下,两个字符串的编辑距离可以通过最长公共子序列的长度(关于最长公共子序列,可以参看前文《序列比对(24)最长公共子序列》)间接算出来。...解编辑距离的代码 #include #include #include #define MAXSEQ 1000 #define GAP_CHAR

    1.3K10

    经动态规划:编辑距离

    编辑距离可以衡量两个 DNA 序列的相似度,编辑距离越小,说明这两段 DNA 越相似,说不定这俩 DNA 的主人是远古近亲啥的。 下面言归正传,详细讲解一下编辑距离该怎么算,相信本文会让你有收获。...一、思路 编辑距离问题就是给我们两个字符串s1和s2,只能用三种操作,让我们把s1变成s2,求最少的操作数。...比如这个情况: 因为这两个字符本来就相同,为了使编辑距离最小,显然不应该对它们有任何操作,直接往前移动i,j即可。...你可能还会问,这里只求出了最小的编辑距离,那具体的操作是什么?之前举的修改公众号文章的例子,只有一个最小编辑距离肯定不够,还得知道具体怎么修改才行。...按这条路径上的操作编辑对应索引的字符,就是最佳方案: 这就是编辑距离算法的全部内容,希望本文对你有帮助。

    36120

    精读《算法题 - 编辑距离

    今天我们看一道 leetcode hard 难度题目:编辑距离。 题目 给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数。...如果我们仅用一个变量,只有两种定义方法: dp(i) 返回 word1 下标为 i 时最短编辑距离。 dp(i) 返回 word2 下标为 i 时最短编辑距离。...动态规划 有了上面的思考,动态规划的定义就清楚了: 定义 i 为 word1 下标,j 为 word2 下标,dp(i,j) 返回 word1 下标为 i,且 word2 下标为 j 时最短编辑距离。...让我们再审视一下 dp(i,j) 的含义:除了返回最短编辑距离外,正因为我们知道了最短编辑距离,所以无论操作步骤、过程如何,都可以假设我们只要做了若干步操作,下标分别截止到 i、j 的 word1、word2...讨论地址是:精读《算法 - 编辑距离》· Issue #501 · dt-fe/weekly 如果你想参与讨论,请 点击这里,每周都有新的主题,周末或周一发布。前端精读 - 帮你筛选靠谱的内容。

    18920
    领券