Yarn作为分布式集群的资源调度框架,它的出现伴随着Hadoop的发展,使Hadoop从一个单一的大数据计算引擎,成为一个集存储、计算、资源管理为一体的完整大数据平台,进而发展出自己的生态体系,成为大数据的代名词。
作者:王刚,腾讯CSIG高级工程师 Flink 资源模型 / 调度设计 背景知识 首先,我们来简单回顾一下 Flink 作业的运行时模型,然后再来探讨在这种运行模型下,Flink 的资源模型和调度架构的设计和实现。 我们引用官网非常经典的一张图,来说明一个 Flink 流作业简化后的运行视图。 Tasks 和 Operator Chains (部分译自官网) 我们知道,一个 Flink 作业可以看做是由 Operators 组成的 DAG,一个 Operator 代表对数据流的进行的某个数据变化操作( So
JWS是公司基于play框架实现一套web应用开发框架,对web开发的多方面都进行了封装。在JAVA开发中,play框架有着广泛的使用,它实现了对网络模型,业务线程池管理,MVC框架支持、数据库连接支持,cache的支持,还有一点就是支持java动态编译的机制,这点在一些少量的前端服务应用中,对业务升级有着很大的意义。在实际应用,大量的分库导致框架重启的时候会产生大量的创建连接池时间消耗,这个对应用是无法接受的。PLAY框架如下:
Container是Yarn框架的计算单元,是具体执行应用task(如map task、reduce task)的基本单位。Container和集群节点的关系是:一个节点会运行多个Container,但一个Container不会跨节点。
HDFS: 负责大数据的存储 Common: HDFS和MR共有的常用的工具包模块! MapReduce: 负责计算,负责计算资源的申请的调度!
根据 Gartner 预测数据显示:2024 年全球 IT 支出预计将达到 5.1 万亿美元,比 2023 年增长 8 %。然而,该机构的另一项调查数据显示:全球数据中心服务器平均 CPU 利用率普遍低于 20%,存在巨大的资源浪费。据测算,以数百万核 CPU 规模的数据中心为例,每提升 1 个百分点的整体资源利用率,每年将节省数千万元的成本。由此可见,提高资源利用率对于降低企业运营成本具有显著的效果。
Spark有三种集群部署模式,或者叫做集群管理模式。分别是standalone,YARN和Mesos。这三种模式其实都是master/slave模式。 那么在实际的项目中,我们该如何对比选择呢?
摘要:本文以资源分配理念:拍卖、预算、抢占出发,引出Borg、Omega、Mesos、Kubernetes架构、数据、API的特点比较。然后梳理资源共享各种不同共享形式的内容,接着对比任务类型,最后回到资源利用率和基于数据预测角度,看相关系统是如何运用的和实现各自场景目标的。最后给出阿里巴巴电商在线服务资源调度器Zeus关键技术内容。具体单个调度器技术和文章,可以在网络获取。进入这个领域的门槛不在具体某个技术,而业务场景和技术选型的映射匹配,特别是周边系统的完善程度,决定了如何选择方案、如何制定落地计划。整
在国内,大部分的Spark用户都是由Hadoop过渡而来,因此YARN也成了大多Spark应用的底层资源调度保障。而随着Spark应用的逐渐加深,各种问题也随之暴露出来,比如资源调度的粒度问题。为此,7月2日晚,在CSDN Spark高端微信群中,一场基于YARN和Mesos的讨论被拉开,主要参与分享的嘉宾包括TalkingData研发副总裁阎志涛,GrowingIO田毅,AdMaster技术副总裁卢亿雷,Spark Committer、Mesos/Hadoop Contributor夏俊鸾,下面一起回顾。
根据 Gartner 预测数据显示:2024 年全球 IT 支出预计将达到 5.1 万亿美元,比 2023 年增长 8 %。然而,该机构的另一项调查数据显示:全球数据中心服务器平均 CPU 利用率普遍低于 20%,存在巨大的资源浪费。据测算,以数百万核 CPU 规模的数据中心为例,每提升 1 个百分点的整体资源利用率,每年将节省数千万元的成本。由此可见,提高资源利用率对于降低企业运营成本具有显著的效果。 早在 2015 年,谷歌就在其经典论文《Large-scale cluster management at Google with Borg》中披露了它在资源管理和调度方面的实践经验,是最早通过混部技术来提升资源利用率的公司之一。国内多家头部互联网企业也相继实施类似的技术方案,并取得可观的资源利用率提升效果。 随着小红书业务的高速发展,各类在线、离线业务对计算资源的需求日益增长。与此同时,我们观察到:部分在线集群天均利用率的水位却维持在较低的水平。造成这一现象的主要原因有以下几点:
摘要:本文根据 Apache Flink 系列直播整理而成,由阿里巴巴高级开发工程师宋辛童分享。文章主要从基本概念、当前机制与策略、未来发展方向等三个方面帮助开发者深入理解 Flink 的资源管理机制。
今天分享的主题是微博数据库资源调度平台的架构实践,是我们内部启动的⼀个项⽬。主要实现的功能有两个:⼀个是资源的智能调度,⼀个是成本优化。都是⾮常实⽤的场景。
分布式资源管理和调度是指在分布式系统中有效地管理和调度系统中的资源,以满足各种任务的需求。在一个分布式系统中,资源可以包括计算资源(如CPU、内存)、存储资源(如磁盘空间)、网络带宽等。
随着Hadoop的普及,单个Hadoop集群的用户量越来越大,不同用户提交的应用程序往往具有不同的服务质量要求,典型的应用有以下几种: 批处理作业。这种作业往往耗时较长,对完成时间一般没有严格要求,如数据挖掘、机器学习等方面的应用程序 交互式作业。这种作业期望能及时返回结果,如用HIVE执行查询 生产性作业。这种作业要求有一定量的资源保证,如统计值计算、垃圾数据分析等 ---- 基本架构 资源调度器是YARN中最核心的组件之一,且是插拔式的,它定义了一整套接口规范以便用户可按照需要实现自己的调度器 YAR
以上两类Container可能在任意节点上,它们的位置通常而言是随机的,即ApplicationMaster可能与它管理的任务运行在一个节点上。
这个架构图看起来会比较复杂,很难看懂,我把这个官方的架构图重新简化了一下,就会非常容易理解了:
云计算并非无中生有的概念,它将普通的单台PC计算能力通过分布式调度软件连接起来。其最核心的问题是如何把一百台、一千台、一万台机器高效地组织起来,灵活进行任务调度和管理,从而像使用单台机器一样方便地使用多台机器。目前,业界已存在多种分布式调度实现方案,比较知名的有 Hadoop YARN、Mesos、Google Borg 等。 区别于以上调度系统,腾讯云的 VStation 从诞生之初,便肩负着大规模调度、海量并发和支持异构计算的历史使命,历经五年的打磨和历练,VStation 通过消息压缩、镜像缓存、快照
在Spark Standalone模式下,集群资源调度由Master节点负责。Spark也可以将资源调度交给YARN来负责,其好处是YARN支持动态资源调度。Standalone模式只支持简单的固定资源分配策略,每个任务固定数量的core,各Job按顺序依次分配资源,资源不够时排队等待。这种策略适用单用户的场景,但在多用户时,各用户的程序差别很大,这种简单粗暴的策略很可能导致有些用户总是分配不到资源,而YARN的动态资源分配策略可以很好地解决这个问题。关于资源调度,第3章中还会详细讲解。 另外,YARN作
api网关翻译成中文就是应用程序入口。在企业应用的微服务系统架构之中,通常都有不同的模块和板块,将几个不同的程序分为几个低耦合的服务,就是通常所说的微服务。这些服务都代表着不同的功能,承担着不同的职责。虽然这些服务各有各的优势,然而他们却无法让客户能够更安全快速的访问需要的信息。 api网关的优势这时候就凸显出来了,下面来看一看统一资源调度平台api网关优势。
Kubernetes 已经成为容器编排领域的事实标准,将来所有应用都会在 Kubernetes 上开发和运行,这个系列文章的目的是深入浅出的介绍 Kubernetes 底层实现的原理。
在上周发布的《从“鸿沟理论”看云原生,哪些技术能够跨越鸿沟?》一文中,灵雀云CTO陈恺表示:Kubernetes在云计算领域已经成为既定标准,进入主流市场,最新版本主要关注在稳定性、可扩展性方面,在开发人员中变得非常流行。Kubernetes会越来越多往下管理所有基础设施,往上管理所有种类的应用。我们会看到,越来越多的周边技术向它靠拢,在其之上催化出一个庞大的云原生技术生态。
1.NameNode: 相当于一个领导者,负责调度 ,比如你需要存一个1280m的文件 如果按照128m分块 那么namenode就会把这10个块(这里不考虑副本) 分配到集群中的datanode上并记录对于关系 。当你要下载这个文件的时 候namenode就知道在那些节点上给你取这些数据了。它主要维护两个 map 一个是文件到块的对应关系 一个是块到节点的对应关系。 2. secondarynamenode: 它是namenode的一个快照,会根据con
在hadoop生态越来越完善的背景下,集群多用户租用的场景变得越来越普遍,多用户任务下的资源调度就显得十分关键了。比如,一个公司拥有一个几十个节点的hadoop集群,a项目组要进行一个计算任务,b项目组要计算一个任务,集群到底先执行哪个任务?如果你需要提交1000个任务呢?这些任务又是如何执行的? 为了解决上面的问题,就需要在hadoop集群中引入资源管理和任务调度的框架。这就是——Yarn。 YARN的发展 Yarn在第一代的时候,框架跟hdfs差不多。一个主节点jobtracker,用来分配任务和
Hadoop是Apache开源组织的一个分布式基础框架,提供了一个分布式文件系统 (HDFS)、分布式计算(MapReduce)及统一资源管理框架(YARN)的软件架构。
Spark部署模式分为Local模式(本地单机模式)和集群模式,在Local模式下,常用于本地开发程序与测试,而集群模式又分为Standalone模式(集群单机模式)、Yarn模式和Mesos模式,关于这三种集群模式的相关介绍具体如下:
随着互联网与软件的发展,除了程序员,架构师也是越来越火的职业。他们伴随着项目的整个生命过程,他们更像是传统工业的设计师,将项目当做生命一般细心雕琢。
随后就是RPC架构,之前的垂直应用架构其实可以说是在一个进程内的通讯,而RPC就是一种进步,RPC是进程之间的通讯,远程过程调用就是这么来的。
1 资源调度的目标和价值 1.1 子系统高效调度 任务之间资源隔离,减少争抢。 任务分配调度时结合资源分配,各个任务分配合理的资源,充分利用系统资源,减少资源利用不充分的问题。 资源调度结合优先级,优先级高的分配更多的资源。 1.2 提高全系统的资源利用率 各个子系统,存在不同时期,对资源需求不一样的情况,平滑系统资源的利用。 1.3 支持动态调整切分资源,增强系统扩展性。 系统对资源的规划很难一次性准确,通过mesos支持虚拟主机的方式,动态扩展。 2 资源调度使用限制以及难点 2.1 资源调度使用限制
集群是一种计算机系统,通过一组计算机或服务器的软硬件连接起来高度紧密地协作完成计算工作。在客户端看来为其提供服务的只有一台设备,实际上它是一群设备的集合,只不过这些设备提供的服务一样。
standalone模式,是spark自己实现的,它是一个资源调度框架。这里我们要关注这个框架的三个节点:
引入YARN作为通用资源调度平台后,Hadoop得以支持多种计算框架,如MapReduce、Spark、Storm等。MRv1是Hadoop1中的MapReduce,MRv2是Hadoop2中的MapReduce。下面是MRv1和MRv2之间的一些基本变化:
Spark是基于内存的计算框架,性能要优于Mapreduce,可以实现hadoop生态圈中的多个组件,是一个非常优秀的大数据框架,是Apache的顶级项目。One stack rule them all 霸气。
导读:随着公司业务的快速发展,离线计算集群规模和提交的作业量持续增长,如何支撑超大规模集群,如何满足不同场景的调度需求成为必须要解决的问题。基于以上问题,快手大数据团队基于YARN做了大量的定制和优化,支撑了不同场景下的资源调度需求。
Yarn既然是一个分布式资源调度框架,管理着节点上的计算资源,那它分配这些资源的时候,便会存在调度策略。
大数据文摘出品 作者:迟慧 随着行业的快速发展和业务的高速迭代,数据量也呈爆炸式增长,大数据云原生化逐渐成为企业数字化转型的重要演进方向。数字化驱动企业提升运营效率,洞察商业机会;云原生化提升 IT 系统效率,促进业务敏捷,大数据云原生化是为企业创新提供无限可能。 大势所趋:云原生大数据 传统的大数据架构在资源利用、高效运维、可观测性等方面存在诸多不足,已经越来越无法适应当下的发展需求。具体来讲,传统大数据架构主要存在以下几方面的问题: 传统大数据组件繁多,安装运维复杂,在生产使用中需要大量的人力支持; 在
10月25日,第一届中国云计算基础架构开发者大会在长沙召开,星环科技与众多国内外厂商共同就“云原生”、“安全与容错”和“管理与优化”等云计算领域话题进行了深入交流和探讨。星环科技容器云研发工程师关于"基于Kubernetes的复杂工作负载混合调度器思考与实践"相关内容进行了分享,本文是对会议上内容的整理。
Project 软件是一款专门用于项目管理的软件工具,它可以帮助用户规划、跟踪和分析项目进度和资源使用情况。在实际工作中,很多项目都需要进行复杂的调度和管理,这时候 Project 就显得尤为重要。它提供了丰富的功能和工具,能够帮助用户更好地进行项目管理,下面我将结合实际案例,从举例讲解的角度出发,来介绍 Project 软件的独特功能。
Hadoop三大核心组件:分布式文件系统HDFS、分布式计算框架MapReduce,分布式集群资源调度框架Yarn。Yarn并不是在Hadoop初期就有的,是在Hadoop升级发展才诞生的,典型的Master-Slave架构。
在现代的分布式系统中,Master 节点扮演着关键的角色,确保集群的稳定性和高可用性。我们将在本文中详细解释 Master 节点的作用、其在分布式系统中的应用、以及如何实现一个简单的示例。
hadoop是 Doug Cutting 在 Lucene 之后的一个项目 主要用于 计算 是一个 开源,可靠,可扩展 的分布式计算框架 主要有
本章将从几则故事说起,让大家明白大数据是与我们的生活息息相关的,并不是遥不可及的,还会介绍大数据的特性,以及大数据对我们带来的技术变革,大数据处理过程中涉及到的技术
原文地址:玩转集群配置中心,一文带你了解Taier控制台丨DTMO 03期直播回顾(内含视频+课件)
Spark的资源调度是个很重要的模块,只要搞懂原理,才能具体明白Spark是怎么执行的,所以尤其重要。
作者提出一种在矢量装箱问题下的,基于深度强化学习的,资源调度算法(原文称作业调度),该算法可自动获得合适的计算方法,该方法将最小化完成时间(最大化吞吐量),本文从trace-driven的仿真演示了DeepJS的收敛和泛化性以及DeepJS学习的本质,同时实验表明DeepJS优于启发式的调度算法
由于Yarn良好的兼容性和扩展性,目前可以支持大部分数据引擎,所以了解Yarn的资源调度原理很有必要,Yarn主要由四个重要角色组成:
领取专属 10元无门槛券
手把手带您无忧上云