首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Java移位运算符

    移位运算符就是在二进制的基础上对数字进行平移。按照平移的方向和填充数字的规则分为三种:<<(左移)、>>(带符号右移)和>>>(无符号右移)。   在移位运算时,byte、short和char类型移位后的结果会变成int类型,对于byte、short、char和int进行移位时,规定实际移动的次数是移动次数和32的余数,也就是移位33次和移位1次得到的结果相同。移动long型的数值时,规定实际移动的次数是移动次数和64的余数,也就是移动66次和移动2次得到的结果相同。 三种移位运算符的移动规则和使用如下所示: <<运算规则:按二进制形式把所有的数字向左移动对应的位数,高位移出(舍弃),低位的空位补零。 语法格式:   需要移位的数字 << 移位的次数   例如: 3 << 2,则是将数字3左移2位 计算过程:   3 << 2   首先把3转换为二进制数字0000 0000 0000 0000 0000 0000 0000 0011,然后把该数字高位(左侧)的两个零移出,其他的数字都朝左平移2位,最后在低位(右侧)的两个空位补零。则得到的最终结果是0000 0000 0000 0000 0000 0000 0000 1100,则转换为十进制是12.数学意义:   在数字没有溢出的前提下,对于正数和负数,左移一位都相当于乘以2的1次方,左移n位就相当于乘以2的n次方。 >>运算规则:按二进制形式把所有的数字向右移动对应巍峨位数,低位移出(舍弃),高位的空位补符号位,即正数补零,负数补1. 语法格式:   需要移位的数字 >> 移位的次数   例如11 >> 2,则是将数字11右移2位 计算过程:11的二进制形式为:0000 0000 0000 0000 0000 0000 0000 1011,然后把低位的最后两个数字移出,因为该数字是正数,所以在高位补零。则得到的最终结果是0000 0000 0000 0000 0000 0000 0000 0010.转换为十进制是3.数学意义:右移一位相当于除2,右移n位相当于除以2的n次方。 >>>运算规则:按二进制形式把所有的数字向右移动对应巍峨位数,低位移出(舍弃),高位的空位补零。对于正数来说和带符号右移相同,对于负数来说不同。   其他结构和>>相似。   小结   二进制运算符,包括位运算符和移位运算符,使程序员可以在二进制基础上操作数字,可以更有效的进行运算,并且可以以二进制的形式存储和转换数据,是实现网络协议解析以及加密等算法的基础。 实例操作:   public class URShift {   public static void main(String[] args) {   int i = -1;   i >>>= 10;   //System.out.println(i);   mTest();   }   public static void mTest(){   //左移   int i = 12; //二进制为:0000000000000000000000000001100   i <<= 2; //i左移2位,把高位的两位数字(左侧开始)抛弃,低位的空位补0,二进制码就为0000000000000000000000000110000   System.out.println(i); //二进制110000值为48;   System.out.println("
    ");   //右移   i >>=2; //i右移2为,把低位的两个数字(右侧开始)抛弃,高位整数补0,负数补1,二进制码就为0000000000000000000000000001100   System.out.println(i); //二进制码为1100值为12   System.out.println("
    ");   //右移example   int j = 11;//二进制码为00000000000000000000000000001011   j >>= 2; //右移两位,抛弃最后两位,整数补0,二进制码为:00000000000000000000000000000010   System.out.println(j); //二进制码为10值为2   System.out.println("
    ");   byte k = -2; //转为int,二进制码为:0000000000000000000000000000010   k >>= 2; //右移2位,抛弃最后2位,负数补1,二进制吗为:11000000000000000000000000000   System.out.println(j); //二进制吗为11值为2   }   }   在Thinking in Java第三章中的一段话:   移位运算符面向的运算对象也是   二进制

    02

    剑指offer--二进制中1的个数

    C++代码思路 这题有3种思路。第一种:让n与1相与后判断是否为真,若为真,计数器cnt加一并将n右移1位直至n为0。这种思路受限于n是否为正数,若n为负数,那么每次右移最高位补1而非0,那么这会导致死循环。第二种:将第一种思路反过来思考,将flag = 1与n相与,若为真,cnt++,每次将flag左移一位,那么这种解法的时间复杂度与n的2进制数的位数一样,效率不高。第三种:一个数n如果减1,那么将这个2进制数从右向左的第一个“1”变成0,若这个1不是最低位,那么之后的所有位取反,而这个1左边的所有位保持不变。那么n与n-1相与可以使从右向左的第一个1与其之后的位变成0,那么这个2进制数有几个1,只需几次上述操作即可。

    01

    Java中的位运算符

    大家在接触运算符的时候通常都已经学完了变量的使用,对于算术以及赋值运算的感觉就是So easy!这不就是小学的知识嘛,对于逻辑运算符的部分依然无压力,这不就是中学的知识嘛?但是突然出现了一个位运算符,啥是移位?啥是异或?接下来就先从简单的开始。说起位运算符,其实就是基于数据存储的二进制位进行的运算,更底层,所以效率更高。另外一个需要注意的问题就是:由于小数在进行存储的时候采用的是IEEE(符号、指数、尾数)方式,并不止对整数和小数部分直接转换为二进制来存储的,所以小数是不能使用位运算符来操作的。对于整数和字符型的运算符操作也有一些潜在的法则,相信看完这篇文章你很容易就会掌握。

    03

    十进制小数转换为二进制[通俗易懂]

    十进制小数转换方法 十进制小数→→→→→二进制小数 方法:“乘2取整” 对十进制小数乘2得到的整数部分和小数部分,整数部分既是相应的二进制数码,再用2乘小数部分(之前乘后得到新的小数部分),又得到整数和小数部分. 如此不断重复,直到小数部分为0或达到精度要求为止.第一次所得到为最高位,最后一次得到为最低位 如:0.25的二进制 0.25*2=0.5 取整是0 0.5*2=1.0 取整是1 即0.25的二进制为 0.01 ( 第一次所得到为最高位,最后一次得到为最低位) 0.8125的二进制 0.8125*2=1.625 取整是1 0.625*2=1.25 取整是1 0.25*2=0.5 取整是0 0.5*2=1.0 取整是1 即0.8125的二进制是0.1101(第一次所得到为最高位,最后一次得到为最低位) 十进制小数→→→→→八进制小数 方法:“乘8取整” 0.71875)10 =(0.56)8 0.71875*8=5.75 取整5 0.75*8=6.0 取整6 即0.56 十进制小数→→→→→十六进制小数方法:“乘16取整”例如: (0.142578125)10=(0.248)16 0.142578125*16=2.28125 取整2 0.28125*16=4.5 取整4 0.5*16=8.0 取整8 即0.248 非十进制数之间的转换 (1)二进制数与八进制数之间的转换 转换方法是:以小数点为界,分别向左右每三位二进制数合成一位八进制数,或每一位八进制数展成三位二进制数,不足三位者补0。例如: (423。45)8=(100 010 011.100 101)2 (1001001.1101)2=(001 001 001.110 100)2=(111.64)8 (2)二进制与十六进制转换 转换方法:以小数点为界,分别向左右每四位二进制合成一位十六进制数,或每一位十六进制数展成四位二进制数,不足四位者补0。例如: (ABCD。EF)16=(1010 1011 1100 1101.1110 1111)2 (101101101001011.01101)2=(0101 1011 0100 1011.0110 1000)2=(5B4B。68)16

    03
    领券