首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

决策树1:初识决策树

0x01 决策树的思想 1.1 什么是决策树 决策树是一种常见的机器学习算法,它的思想十分朴素,类似于我们平时利用选择做决策的过程。...1.2 决策树与条件概率 在前面已经从直观上了解决策树,及其构造步骤了。现在从统计学的角度对决策树进行定义能够能好地帮助我们理解模型。...2.2 决策树损失函数 与其他模型相同,决策树学习用损失函数表示这一目标。决策树学习的损失函数通常是正则化的极大似然函数。决策树学习的策略是以损失函数为目标函数的最小化。...3 决策树的构建 决策树通常有三个步骤: 特征选择 决策树的生成 决策树的修剪 决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。...决策树生成和决策树剪枝是个相对的过程,决策树生成旨在得到对于当前子数据集最好的分类效果(局部最优),而决策树剪枝则是考虑全局最优,增强泛化能力。

1.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    决策树

    https://blog.csdn.net/jxq0816/article/details/82829502 决策树通过生成决策规则来解决分类和回归问题。...但是由于决策树在理论上能无限制地划分节点 前剪枝:在划分节点之前限制决策树的复杂度,通过一些阈值来限制决策树的生长,比如max_depth、min_sample_split等参数。...后剪枝:在决策树构建完成之后,通过剪枝集修改树的结构,降低它的复杂度。 这两种方法相比,前剪枝的实现更加容易,也更加可控,因为在实际应用中应用得更加广泛。...决策树最大的缺点在于模型的最后一步算法过于简单:对于分类问题,只考虑叶子节点里哪个类别占比最大;而对于回归问题,则计算叶子节点内数据的平均值。这导致它在单独使用时,预测效果不理想。...因此在实际中,决策树常常被用来做特征提取,与其他模型联结起来使用。

    48530

    决策树

    决策树学习 决策树是一种用来进行分类和回归的无参有监督学习方法,其目的是创建一种模型,从模型特征中学习简单的决策远着呢,从而预测一个目标变量的值。...,默认为None,表示所有叶子节点为纯节点 对数据集构造决策树,首先生成DecisionTreeClassifier类的一个实例(如clf),然后使用该实例调用fit()方法进行训练。...对训练好的决策树模型,可以使用predict()方法对新的样本进行预测。...sklearn.tree模块提供了训练的决策树模型的文本描述输出方法export_graphviz(),如果要查看训练的决策树模型参数,可以使用该方法,其格式为: sklearn.tree.export_graphviz...#例8-3 构造打篮球的决策树 import numpy as np import pandas as pd #读数据文件 PlayBasketball = pd.read_csv('D:/my_python

    56420

    决策树

    一、 决策树简介 决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件。...这就构成了一颗简单的分类决策树。 ? 1.jpg ? 2.jpg 二、 相关知识 请参考周志华《机器学习》第4章:决策树 注意,第75页有一行内容:信息熵的值越小,则样本集合的纯度越高。...此时的决策树为 ?...第一条数据,第5个属性值是2,需要再判断第3个属性,第3个属性的值为4,根据决策树得出的预测分类为1,与实际结果吻合 第二条数据,第5个属性值是1,根据决策树得出的预测分类为0,与实际结果吻合 第三条数据...1,根据决策树得出的预测分类为0,与实际结果吻合 六、 完整代码 (1)DecisionTree.py # 具有两种剪枝功能的简单决策树 # 使用信息熵进行划分,剪枝时采用激进策略(即使剪枝后正确率相同

    1.1K20

    决策树的原理_决策树特征选择

    决策树的原理:根据树结构进行决策,可以用于分类和回归。一颗决策树包括一个根结点、若干个内部节点和若干个叶节点。...从根节点出发,对每个特征划分数据集并计算信息增益(或者增益率,基尼系数),选择信息增益最大的特征作为划分特征,依次递归,直至特征划分时信息增益很小或无特征可划分,形成决策树决策树 优点 1....样本发生一点点变化会导致树的结构剧烈变动 决策树的算法:ID3算法、C4.5算法、CART算法 算法 优缺点 ID3算法 不足: 无法处理连续特征;信息增益使得算法偏向于取值较多的特征;没有考虑缺失值和过拟合的问题...C4.5算法 优点: 可以处理连续特征,引入增益率校正信息增益,考虑了数据缺失和过拟合的问题;不足: 剪枝方法有优化空间,生成的多叉树运算效率不高,大量对数运算和排序运算很耗时,只能用于分类不能回归。

    33710

    决策树

    决策树(Decision Tree) 机器学习里面的算法与编程语言里面的算法不大一样,主要是指数学上面的算法,而不是数据结构相关的算法。...不过机器学习里的与种算法叫做决策树,本质上就是编程语言中数据结构里面的树结构。 决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。...分类树(决策树)是一种十分常用的分类方法。...C4.5 算法继承了 ID3 算法的优点,并在以下几方面对 ID3 算法进行了改进: 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足 在树构造过程中进行剪枝 能够完成对连续属性的离散化处理

    49040

    决策树

    决策树(decision tree)是一类常见的机器学习方法。以二分类任务为例,我们希望从给定训练数据集学得一个模型用以对新示例进行分类,这个把样本分类的任务,可看作对“当前样本属于正类吗?”...顾名思义,决策树是基于树结构来进行决策的,这恰是人类在面临决策问题时的一种很自然的处理机制。例如,我们要对“这是好瓜吗?”...一般的,一个决策树包含一个根节点、若干个内部节点和若干个叶节点;叶节点对应于决策结果,其他每个节点则对应于一个属性测试;每个节点包含的样本集合根据属性测试的结果被划分到子节点中;根节点包含样本全集。...决策树学习的目的是为了产生一颗泛化能力强,即处理未见示例能力强的决策树,其基本流程遵循简单直观的“分而治之”策略,算法如下所示, 输入:训练集 属性集 过程:函数 生成节点node. if...显然,决策树的生成是一个递归过程,在决策树基本算法中,有三种情形会导致递归返回:当节点包含的样本全属于同一类别,无需划分当前属性集为空,或是所有样本在所有属性上取值相同,无法划分当前划分节点包含的样本集合为空

    1.1K20

    决策树

    简介 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法...由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。...决策树学习通常包括 3 个步骤: 特征选择 决策树的生成 决策树的修剪 1.1 决策树场景 场景一:二十个问题 有一个叫 “二十个问题” 的游戏,游戏规则很简单:参与游戏的一方在脑海中想某个事物,其他参与者向他提问...1.2 定义 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。...构造决策树是很耗时的任务,即使很小的数据集也要花费几秒。如果用创建好的决策树解决分类问题就可以很快完成。

    2.3K190

    决策树

    因此,我们可用信息增益来进行决策树的划分属性选择,即在上述“决策树学习的基本算法”章节中第6行选择属性a_* = argmax_{a\in A}Gain(D,a).著名的ID3决策树学习算法就是以信息增益为准则来选择划分属性...总结: 对信息增益和基尼系数进行理论分析显示,它们仅在2%的情况下会有所不同;注意对于连续变量,由于离散化的方式不同,可能会存在差异。...决策树的剪枝往往是通过极小化决策树整体的损失函数(loss function)或代价函数(cost function)来实现。...换言之,决策树生成算法只学习局部的模型,而决策树剪枝算法则关注整体的泛化性能。...四、决策树算法总结: 决策树算法 输入数据类型 树类型 特征选择标准 ID3 离散型 多叉树 信息增益 C4.5 离散型、连续型 多叉树 信息增益率 CART分类回归 离散型、连续型 二叉树 基尼系数、

    90841

    连续测试策略

    何为连续测试 「连续测试」是一种常见软件测试类型,其中涉及经常在连续交付过程的多个阶段进行不同类型的测试以评估软件质量,以及早发现BUG,最终提供高质量的软件和增强业务连续性。...连续测试在DevOps中使用自动化工具起着关键作用,自动化工具可帮助开发人员快速获取有关缺陷的反馈并做出相应的更改,相关内容请参考如何在DevOps中实施连续测试。...高质量连续测试的挑战 大多数敏捷团队都希望进行频繁的部署,但是由于缺乏有效的连续测试交付策略,大多数组织甚至无法缩短其软件开发周期。...选择测试自动化工具 建立全面的连续测试策略是一项长期任务,但是选择正确的测试自动化工具对于实现完全稳定性至关重要。...一个好的自动化工具将通过激活连续的发布和部署、减少时间和维护成本,增加代码的可重用性以及提供更高的投资回报来始终为组织增加价值。

    82830

    决策树模型

    模型 决策树学习本质上是从训练数据集中归纳出一组分类规则或者条件概率模型(在节点处取条件概率最大的进行分类)。决策树问题一般可以分成特征选择、决策树生成、剪枝三部分。...特征选择:通过建立一个函数来衡量特征划分的效果 生成:递归构造决策树的过程 剪枝:递归产生的决策树往往会递归到不能分类为止,这会导致出现过拟合现象,因此需要已经生成的决策树进行剪枝(pruning),一般是通过极小化决策树整体的损失函数...,下分别介绍不同算法的决策树生成方法。...CART假设决策树是二叉树,左分支为节点特征值取“是”的分支,右分支为取值为否的分支。...最后,在通过独立的验证数据集,借助平方误差或者基尼指数来评估泛化误差,找到最优的决策树

    45930
    领券