由飞利浦公司开发,支持设备间的短距离通信。i2c通信需要的引脚少,硬件实现简单、可扩展性强,被广泛应用在系统内多个集成电路(IC)间的通信。
总线代表着同类设备需要共同遵守的工作时序,不同的总线对于物理电平的要求是不一样的,对于每个比特的电平维持宽度也是不一样,而总线上传递的命令也会有自己的格式约束。如I2C总线、USB总线、PCI总线等等。以I2C总线为例,在同一组I2C总线上连接着不同的I2C设备。
文章目录 一、I2C接口技术 1.I2C总线系统组成 2.I2C总线的状态及信号 3.I2C总线基本操作 4.启动和停止条件 5.I2C总线数据传输格式 二、I2C总线上拉电阻的估算与选取 三、树莓派与AT24C02接口实验电路及Python SMBus串行I2C EEPROM应用编程 1.启动RPi串行I2C接口及安装Python SMBus库 2. 树莓派与AT24C02 EEPROM接口实验电路 3. Python SMBus库函数介绍 4. 使用I2C Tools及Python SMBus读写AT24C02 EEPROM 一、I2C接口技术 I2C接口是嵌入式系统中常用的网络接口之一,它采用串行通信方式将MCU/传感器连接到系统总线,通过主机/从机的方式协调工作。 I2C/IIC(Inter-Integrated Circuit)总线是由PHILIPS公司于1982年针对MCU/传感器等应用需求而研制的一种两线式串行总线,用于连接MCU及传感器等设备。 I2C总线的主要特点如下: (1)I2C总线最主要的优点是其简单性和有效性。 (2)由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。 (3)I2C总线的长度可高达25英尺(约7.6m),并且能够以标准模式100Kbps的传输速率支持40个组件。新一代I2C总线还支持高速模式400Kbps传输。 (4)I2C总线的另一个优点是支持多主控(multi-mastering), 其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号传输和时钟频率。当然,在任何时间点上只能有一个主控。 1. I2C总线系统组成 I2C总线协议包含两层协议:物理层和数据链路层。 在物理层,I2C总线仅使用了两条信号线:一个是串行数据线SDA (Serial DAta line),它用于数据的发送和接收;另一个是串行时钟线SCL (Serial Clock Line)构成的串行总线,它用于指示何时数据线上是有效数据,即数据同步。MCU与被控IC之间、IC与IC之间进行双向传送,I2C标准模式最大传送速率为100kbps,I2C快速模式最大传输速率为400kbps。 在数据链路层,每个连接到I2C总线上的设备都有唯一的地址,设备的地址由系统设计者决定。在信息的传输过程中,I2C总线上并接的每一设备既是主设备(或从设备)又是发送器(或接收器),这取决于它所要完成的功能。 由I2C总线所构成的系统可以有多个I2C节点设备,并且可以是多主系统,任何一个设备都可以为主I2C;但是任一时刻只能有一个主I2C设备,I2C具有总线仲裁功能,以保证系统正确运行。主I2C设备发出时钟信号、地址信号和控制信号,选择通信的从I2C设备并控制收发。I2C总线要求:(1)各个节点设备必须具有I2C接口功能;(2)各个节点设备必须共地;(3)两根信号线必须接上拉电阻Rp。如图1所示。 图1 多I2C设备接口示意图 2. I2C总线的状态及信号 (1)空闲状态 SCL和SDA均处于高电平状态,即为总线空闲状态(空闲状态为何是高电平的道理很简单,因为它们都接上拉电阻)。 (2)占有总线和释放总线 若想让器件使用总线应当先占有它,占有总线的主控器向SCL线发出时钟信号。数据传送完成后应当及时释放总线,即解除对总线的控制(或占有),使其恢复成空闲状态。 (3)启动信号[S] 启动信号由主控器产生。在SCL信号为高时,SDA产生一个由高变低的电平变化,产生启动信号。 (4)结束/停止信号[P] 当SCL线高电平时,主控器在SDA线上产生一个由低电平向高电平跳变,产生停止信号。启动信号和停止信号的产生见图2所示。 图2 启动信号和停止信号的产生 (5)应答/响应信号[A/NA] 应答信号是对字节数据传输的确认。应答信号占1位,数据接收者接收1字节数据后,应向数据发出者发送一个应答信号。对应于SCL第9个应答时钟脉冲,若SDA线仍保持高电平,则为非应答信号(NA/ACK)。低电平为应答,继续发送;高电平为非应答,结束发送。 (6)控制位信号[R/nW] 控制位信号占1位,IIC主机发出的读写控制信号,高为读、低为写(对IIC主机而言)。控制位(或方向位)在寻址字节中给出。 (7)地址信号 地址信号为从机地址,占7位,称之为“寻址字节”(见表1)。 表1 寻址字节 下面对表1中的各字段进行说明。 器件地址(DA3-DA0):DA3-DA0是I2C总线接口器件固有的地址编码,由器件生产厂家给定,如AT24C××I2C总线EEPROM器件的地址为1010等。 引脚地址(A2、A1、A0):引脚地址由I2C总线接口器件的地址引脚A2、A1、A0的高低来确定,接高电平者为1,接地者为0。 读写控制位/方向位(R/n W):R/nW为1表示主机读,R/nW为0表示主机
目前随着手机等移动设备包含的sensor越来越多,传统应用在sensor上的I2C/SPI接口的局限性也越来越明显,典型的缺陷如下:
I2C(Inter-Integrated Circuit BUS)是I2C BUS简称,中文为集成电路总线,是目前应用最广泛的总线之一。和IMX6ULL有些相关的是,刚好该总线是NXP前身的PHILIPS设计。
在生活中,经常会碰到设备掉电的情况,像手机,智能手环,电脑等等;但是存储的东西不会丢失,比如电话号码,短信消息,记事本,微信,QQ信息等等均会被保存下来;恢复出厂设置后,这些东西才会消失;
I2C总线对应着/bus下的一条总线,这个i2c总线结构体管理着i2c设备与I2C驱动的匹配,删除等操作,I2C总线会调用i2c_device_match函数看I2C设备和I2C驱动是否匹配,如果匹配就调用i2c_device_probe函数,进而调用I2C驱动的probe函数。
[导读] 前文总结了单片机串口个人认为值得注意的一些要点,本文来梳理一下 I2C 总线的一些要点。这个题目有点大,本文对于 I2C 其实很多地方也没整清楚,只为了与前文形成系列,如果大家有补充欢迎留言。说了些闲话,进入正题吧。
I3C 是一种两线双向串行总线,针对多个传感器从设备进行了优化,一次只有一个 I3C 主设备。I3C 向后兼容许多传统I2C 设备,并且I3C 有着显著的速度和新的通信模式,包括随时间更改设备角色的能力(即初始主控器可以将主控器角色传递给总线上的另一个 I3C 设备,如果第二个 I3C 设备支持该功能)。
速度由 SCL 决定,不同模式对上升沿的要求不一样,上升沿斜率受上拉电阻和等效电容影响。
1、同步通信>异步通信; 2、同步通信时必须有一根时钟线连接传输的两端; 3、都是串行通信方式,并行通信用于内部存储间的通信,如flash; 4、适合传输的距离和通信速率成反比关系;
本来不打算写这篇文章,因为网上关于I2C总线通信的资料很多很全。但是最近刚换工作,主要做驱动开发,第一个驱动就是I2C通信,想了想还是结合网上的资料再整理下思路,方便今后的查阅和温习。
在嵌入式开发中,有时候需要确认硬件是否正常连接,设备是否正常工作,设备的地址是多少等等,这里我们就需要使用一个用于测试 I2C 总线的工具:i2c-tools。
由于之前参加了学校的飞兆杯的比赛,题目是循迹小车,由于缺乏对于ldc1314芯片使用知识以及个人的能力原因,项目并没有做出来,但是还是学习了很多东西的。
I2C协议是一个允许多个 “从机” 芯片和一个或更多的 “主机” 芯片进行通讯的协议。它就像串行外设接口(SPI)一样,只能用于短距离通信。又像异步串行接口(如RS232或UART), 只需要两根信号线来交换信息。
首先明确一个概念,关于MCU中通信总线和通信协议,通信总线是一种用于连接各种外设和模块的物理接口,它可以传输数据和控制信息。通信协议则是指在通信总线上传输数据时所遵循的规则和约定,以确保不同设备之间能够正确地交换信息,我们也可以把他叫做通信总线协议。
I2C(IIC)属于两线式串行总线,由飞利浦公司开发用于微控制器(MCU)和外围设备(从设备)进行通信的一种总线,属于一主多从(一个主设备(Master),多个从设备(Slave))的总线结构,总线上的每个设备都有一个特定的设备地址,以区分同一I2C总线上的其他设备。
当然,要把预留设备地址去除,7 bit 协议规定了 8个预留地址,普通厂商不可以使用。保留地址如下:
上一节的最后我们讲到设备树的三大作用,其最后一个作用也是最重要的作用:设备信息集合。这一节结合设备信息集合的详细讲解来认识一下设备和驱动是如何绑定的。所谓设备信息集合,就是根据不同的外设寻找各自的外设信息,我们知道一个完整的开发板有 CPU 和各种控制器(如 I2C 控制器、SPI 控制器、DMA 控制器等),CPU 和控制器可以统称为 SOC,除此之外还有各种外设 IP,如 LCD、HDMI、SD、CAMERA 等,如下图:
一、基本概念。 I2C总线(I2C bus,Inter-IC bus)是一个双向的两线连接总线,提供集成电路之间的通信线路。I2C属于一种串行扩展技术,广泛应用于电视、录像机、音频设备。I2C的意思是“完成集成电路或者功能单元之间信息交换的规范或协议”,采用一条数据线(SDA)和一条时钟线(SCL)来完成数据的传输以及外围器件的扩展。
据非官方统计,90%电子行业的公众号都介绍过3种串行通讯协议:UART、SPI和I2C。这3种串行协议也是电子开发行业最常用的协议。前面介绍了串口通讯协议及其FPGA实现,SPI协议。本篇文章介绍I2C通讯协议及其FPGA实测波形。
介绍 Sunxi 平台上 TWI 驱动接口与调试方法,为 TWI 模块开发提供参考。
I2C(Inter-integrated Circuit)总线支持设备之间的短距离通信,用于处理器和一些外围设备之间的接口,它只需要两根信号线来完成信息交换。I2C最早是飞利浦在1982年开发设计并用于自己的芯片上,一开始只允许100kHz、7-bit标准地址。1992年,I2C的第一个公共规范发行,增加了400kHz的快速模式以及10-bit扩展地址。在I2C的基础上,1995年Intel提出了“System Management Bus” (SMBus),用于低速设备通信,SMBus 把时钟频率限制在10kHz~100kHz,但I2C可以支持0kHz~5MHz的设备:普通模式(100kHz即100kbps)、快速模式(400kHz)、快速模式+(1MHz)、高速模式(3.4MHz)和超高速模式(5MHz)。
I2C 总线规范是由飞利浦半导体编写的。这家公司后来成为 NXP Semiconductors,现在它是 I2C 总线规范的维护相关者。
I2C 总线(Inter-Integrated Circuit Bus)是设备与设备间通信方式的一种。它是一种串行通信总线,由飞利浦公司在1980年代为了让主板、嵌入式系统或手机用以连接低速周边设备而发展[1]。I2C 总线包含两根信号线,一根为信号线 SDA ,另一根为时钟线 SCL 。总线上可以挂载多个设备,以 7 位 I2C 地址为例,总线上最多可以挂载 27 - 1 个设备,即 127 个,地址 0x00 不用(类似于网络中的广播地址)。I2C 还包括一个子集叫 SMBus (System Management Bus),是 1995 年由 Intel 提出的[2]。为什么说是子集,是因为 SMBus 是 I2C 的简化版,电气特性和传输速率等方面上略有不同。下图展示了一个 I2C 主设备和三个 I2C 从设备的示意图,总线上只能有一个主设备,而通常情况下你的主机(如 Raspberry Pi,Arduino)就是主设备,传感器为从设备。
RT-Thread 是一个集实时操作系统(RTOS)内核、中间件组件和开发者社区于一体的技术平台,组件完整丰富、高度可伸缩、简易开发、超低功耗、高安全性的物联网操作系统。RT-Thread 拥有良好的软件生态,支持市面上所有主流的编译工具如 GCC、Keil、IAR 等,工具链完善、友好,支持各类标准接口,如 POSIX、CMSIS、C++应用环境、Javascript 执行环境等,方便开发者移植各类应用程序。商用支持所有主流MCU架构,如 ARM Cortex-M/R/A, MIPS, X86, Xtensa, C-Sky, RISC-V,几乎支持市场上所有主流的 MCU 和 Wi-Fi 芯片。
前言 Linux的IIC驱动想必大家都耳熟能详,网上也有很多相关的教程。 网上的教程总结,比如: 方法问题描述Linux 3.X.X版本之后,设备树+驱动此方法是比较符合linux驱动的写法的。当对于不熟悉设备树的小伙伴,写起来比较棘手使用 i2c-tools,并通过脚本或者应用程序编写设备驱动(简单粗暴)此方法是将设备驱动丢到用户态中,对于一些的设备除了I2C通信还有一些引脚也要控制的,此方法写起来将非常痛苦直接操作i2c总线驱动。(简单粗暴)此方法是将设备驱动丢到用户态中,对于一些的设备除了I2C通信还
PCF8591是一个8位的CMOS数据采集器件,具有4个模拟输入(其中一个为电压模拟输入),一个输出和一个串行I2C总线接口。3个地址引脚A0、A1和A2用于编程硬件地址,允许将最多8个PCF8591器件连接至I2C总线而不需要额外硬件。器件的地址、控制和数据通过两线双向I2C总线传输。器件功能包括多路复用模拟输入、片上跟踪和保持功能、8位模数转换和8位数模转换。最大转换速率取决于I2C总线的最高速率。
源码中会涉及到一部分SMBus相关内容,SMBus是Intel在I2C的基础上开发的类似I2C的总线,本文不探讨SMBus相关内容(其实说白了,还是懒QAQ)。笔者会大体上对I2C子系统的源码进行分析,如若分析的有出入,还望指出。
EEPROM可以掉电保存数据,是一种在产品中经常使用的器件,24Cxx 系列更是被广泛采用。下面是的工程在 24LC02 上调试通过,实现了字节读写,和页读写,MCU 是 STM32F030。采用了 MCU 的硬件 I2C 控制器。
UART、I2C、SPI都是常见的低速板级通信协议,目前主流的SoC都内置了这些通讯协议的控制器,同样,各种传感器、Touch控制器、指纹模块、蓝牙模块、WIFI模块也都兼容这三种通信方式的一种或几种。
I2C(Inter Integrated Circuit)集成电路间总线是由 Philips 公司开发的一种简单、双向二线制同步串行总线。I2C 以主从方式工作。通常有一个主设备和一个或者多个从设备,主从设备通过 SDA(SerialData)串行数据线以及 SCL(SerialClock)串行时钟线两根线相连。
SCL为高电平的时候,SDA由高电平向低电平跳变。结束信号:SCL为高电平的时候,SDA由低电平向高电平跳变。
I2C 是一种串行通信总线,使用一主多从架构,最初设计目的为了让主板、嵌入式系统或手机用来连接低速周边设备。多用于小数据量的场合,有传输距离短,任意时刻只能有一个主机等特性。本篇主要介绍IIC协议格式。
I2C设备驱动是I2C框架中最接近应用层的,其上接应用层,下接I2C核心。也是驱动开发人员需要实现的代码,在此驱动中我们只需负责以下步骤(以ap3216c为例):
MIPI I3C (MIPI Alliance Improved Inter Integrated Circuit) 是一种可扩展的中速串行控制总线接口,用于将外围设备连接到应用处理器,简化集成并提高成本效率,适用于广泛的设备互连应用,包括传感器和存储器接口,为移动产品(从智能手机、可穿戴设备到汽车系统)提供创新设计。
数据通信的种类有:串行通信、并行通信。不管是什么类型的通信,再怎么复杂的,也是在这两种上面衍生出来的。
在I3C总线上,总是包含一个主机和若干个从机,从机又可以是I3C从机,同时支持I2C从机。一个I3C设备可以被设计成仅为主机或者仅为从机,或者既可以为从机也可以为主机,必须设定为主机或者从机,但不能同时为主机和从机。
在之前的 「《I2C总线架构 之 设备驱动》」 和 「《I2C总线架构 之 总线驱动》」 中一再提到i2c核心,本篇文章就总结一下i2c核心的主要功能。
EEPROM可以掉电保存数据,是一种在产品中经常使用的器件,24Cxx 系列更是被广泛采用。
想来单片机这块儿除了USART串口通信外,常见的便是I2C通信了,因为I2C通信 硬件连接简单,可扩展性强,但是这种硬件连线的简洁,是以协议的复杂来弥补的。I2C通信是一种半双工通信,也就是可以双向传输数据但不能同时进行。
最近开始使用I3C,以及I3C VIP了,IP不大,功能不少,目前还在探索阶段。之前断断续续看过I2C, 很久没用也忘记了,也没有系统学习过。开这个帖子和大家一起探讨,如果不正确的地方,欢迎批评指正。
今天来个简单且常见的命令分享。i2c-tools的相关命令常用于linux系统读写i2c设备寄存器的在线调试。 安装命令: apt-get update apt-get install i2c-tools linux版本代码下载路径: https://mirrors.edge.kernel.org/pub/software/utils/i2c-tools/ 一、i2cdetect 1、命令 root@linaro-alip:/# i2cdetect Error: No i2c-bus specified!
里面保存I2C总线驱动相关的文件,比如i2c-omap.c、 i2c-versatile.c、 i2c-s3c2410.c等。
领取专属 10元无门槛券
手把手带您无忧上云