首页
学习
活动
专区
圈层
工具
发布

使用生成式对抗网络进行图像去模糊

AiTechYun 编辑:yuxiangyu 本文主要讨论使用生成式对抗网络实现图像去模糊。...之所以链接两个网络,是因为对生成器的输出没有合适的反馈。我们唯一的衡量标准是鉴别器是否接受生成的样本。 数据 在本教程中,我们使用GAN进行图像去模糊。因此,生成器的输入不是噪声而是模糊的图像。...usp=sharing 我们首先将图像分配到两个文件夹A(模糊)和B(清晰)。 模型 训练过程保持不变。首先,让我们看看神经网络架构! 生成器 生成器旨在重现清晰的图像。网络基于ResNet模块。...它跟踪应用于原始模糊图像的演变。 ? DeblurGAN生成网络的结构 核心是用于对原始图像进行重新采样的9个ResNet模块。让我们看看Keras的实现。...图像去模糊结果 ? 从左到右:原始图像,模糊图像,GAN输出 上图是我们Keras去模糊GAN的结果。即使在模糊很重的情况下,网络也能够减少模糊并生成令人信服的图像。我们能够看到车灯和树枝更清晰了。

6.4K91
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CVPR 2018 | 使用CNN生成图像先验,实现更广泛场景的盲图像去模糊

    本文研究者将图像先验表示为二值分类器,训练 CNN 来分类模糊和清晰图像。实验表明,该图像先验比目前最先进的人工设计先验更具区分性,可实现更广泛场景的盲图像去模糊。...当模糊形状满足空间不变性的时候,模糊过程可以用以下的方式进行建模: ? 其中⊗代表的是卷积算子,B、I、k 和 n 分别代表模糊图像、隐藏的清晰图像、模糊核以及噪声。...为了解决这个问题,关于模糊核和图像的额外约束和先验知识都是必需的。 ? 图 1: 一个去模糊的例子。本文提出了一个判别图像先验,它是从用于图像去模糊的深度二分类网络中学习得到的。...本文提出的方法以更少的边缘振荡效应和更好的视觉愉悦度恢复了模糊图像。 ? 图 5. 在实际的模糊图像中的去模糊结果。本文的结果更加清晰,失真较少。 ? 图 6. 文本图像上的去模糊结果。...与目前最先进的去模糊算法 [26] 相比,本文的方法生成了更加尖锐的去模糊图像,其中的字符更加清晰。 ? 图 12. 去模糊结果和中间结果。

    1.6K80

    CVPR 2018 | 使用CNN生成图像先验,实现更广泛场景的盲图像去模糊

    来自:机器之心 “现有的最优方法在文本、人脸以及低光照图像上的盲图像去模糊效果并不佳,主要受限于图像先验的手工设计属性。本文研究者将图像先验表示为二值分类器,训练 CNN 来分类模糊和清晰图像。...当模糊形状满足空间不变性的时候,模糊过程可以用以下的方式进行建模: ? 其中⊗代表的是卷积算子,B、I、k 和 n 分别代表模糊图像、隐藏的清晰图像、模糊核以及噪声。...为了解决这个问题,关于模糊核和图像的额外约束和先验知识都是必需的。 ? 图1:一个去模糊的例子。本文提出了一个判别图像先验,它是从用于图像去模糊的深度二分类网络中学习得到的。...本文提出的方法以更少的边缘震荡效应和更好的视觉预约度恢复了模糊图像。 ? 图4:在实际的模糊图像中的去模糊结果。本文的结果更加清晰,失真较少。 ? 图5:本文图像上的去模糊结果。...与目前最先进的去模糊算法【26】相比,本文的方法生成了更加尖锐的的去模糊图像,其中的字符更加清晰。 ? 图6:去模糊结果和中间结果。

    1.4K50

    C++ OpenCV模糊图像

    模糊图像 图像模糊是图像处理中最常用的也是比较简单的操作,使用该操作的原因之一就是为了给图像预处理时隆低嗓声....卷积的应用 用一个模板和一幅图像进行卷积,对于图像上的一个点,让模板的原点和该点重合,然后模板上的点和图像上对应的点相乘,然后各点的积相加,就得到了该点的卷积值。对图像上的每个点都这样处理。...卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。 卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。...可以看出来最右边是我们的中值模糊,整体模糊的比较平均. ---- 双边模糊 双边模糊的特点: 均值模糊无法克服边缘像素信息丢失缺陷,原因是均值滤波是基于平均权重....高斯模糊部分克服了该缺陷,但是无法完全避免,因为没有考虑像素值的不同. 高斯双边模糊,是边缘保留的滤波方法,避免了边缘信息丢失,保留了图像轮廓不变.

    2.1K31

    图像去模糊算法代码实践!

    1.起源:GAN 结构与原理 在介绍DeblurGANv2之前,我们需要大概了解一下GAN,GAN最初的应用是图片生成,即根据训练集生成图片,如生成手写数字图像、人脸图像、动物图像等等,其主要结构如下...我们称Generator生成的图像为fake image,训练集中的图片为real image。...:DeblurGANv2 数据集 图像去模糊的数据集通常由许多组图像组成,每组图像就是一张清晰图像和与之对应的模糊图像。...然而,其数据集的制作并不容易,目前常用的方法有两种,第一种是用高帧数的摄像机拍摄视频,从视频中找到连续帧中的模糊图片和清晰图片作为一组数据;第二种方法是用已知或随机生成的运动模糊核对清晰图片进行模糊操作...最后,G的loss如下所示: 作者给出的lambda为0.001,可以看出作者更注重生成图像与原图的相似性。 3.代码实践 训练自己的数据集 (目前仅支持gpu训练!)

    2.1K20

    web实时长图实践

    //生成base64图片数据 imgBase64 = canvas.toDataURL(); }); 使用简单,但是坑不少,遇到的坑及解决方案: 1.截图模糊 主要解决思路: 1)将canvas...3.截图模糊 又是模糊问题… css使用相对rem单位,PhantomJS截图是设置缩放参数: //css html{font-size: 100px;} .owner_avatar{width:.30rem...mpc生成两个文件: 1)一个扩展名.mpc保留了与图像或图像序列相关的所有属性(例如宽度,高度,色彩空间等)。 2)一个扩展名.cache,是本地原始格式的像素缓存。...读取mpc图像文件时,ImageMagick读取图像属性,并将内存映射到磁盘上的像素缓存,无需解码图像像素,不过mpc的文件大小比其他图像格式大。...mpc图像文件适用于一次写入,多次读取模式,使用mpc将图像直接映射到内存,而不是每次重新读取和解压源图像。

    7.2K80

    图像处理之灰度模糊图像与彩色清晰图像的变换

    针对模糊图像的处理,个人觉得主要分两条路,一种是自我激发型,另外一种属于外部学习型。接下来我们一起学习这两条路的具体方式。...图像增强   图像增强是图像预处理中非常重要且常用的一种方法,图像增强不考虑图像质量下降的原因,只是选择地突出图像中感兴趣的特征,抑制其它不需要的特征,主要目的就是提高图像的视觉效果。...图像锐化   采集图像变得模糊的原因往往是图像受到了平均或者积分运算,因此,如果对其进行微分运算,就可以使边缘等细节信息变得清晰。...其算法主要是深度学习中的卷积神经网络,我们在待处理信息量不可扩充的前提下(即模糊的图像本身就未包含场景中的细节信息),可以借助海量的同类数据或相似数据训练一个神经网络,然后让神经网络获得对图像内容进行理解...、判断和预测的功能,这时候,再把待处理的模糊图像输入,神经网络就会自动为其添加细节,尽管这种添加仅仅是一种概率层面的预测,并非一定准确。

    3K90

    Python生成随机高斯模糊图片

    Python可以使用opencv库很方便地生成模糊图像,如果没有安装opencv的,可以用pip安装: pip install python-opencv 想了解高斯模糊是什么的话,可以看wiki百科-...对于一般人,只要知道这个操作可以生成模糊图片就好了,一行代码即可搞定: import cv2 img = cv2.GaussianBlur(ori_img, (9, 9), 0) 这个函数的第一个参数是原图像...那怎么控制模糊程度呢?很简单,高斯矩阵的尺寸越大,标准差越大,处理过的图像模糊程度越大。...介绍完了简单的高斯模糊操作,我们加一个随机处理,来随机生成模糊程度不同的几张图像,其实也很简单,加一个随机函数来生成高斯矩阵的尺寸就可以了: import cv2 import random imgName...kernel_size[0]) + "_" + imgName cv2.imwrite(new_imgName, img) 这里利用了random库,来在一组数字中随机选择一个数,加到最小尺寸上,作为每次生成的模糊图片的高斯矩阵尺寸

    2K10
    领券