Python中有很多常用的数据分析函数,可以帮助我们对样本有一个初步的认识,比如describe()函数,可以很方便地生成每个变量的最大值、最小值、分位数等。
如果要用这个包进行分析,首先需要在R中将我们的芯片数据读取进来,就是常说的import data。对于minfi 来说,其设计思路是通过读取SampleSheet.csv 文件,在事先约定好的目录结构中查找所有样本的原始数据,来自动化的读取所有样本的信息。
Hail是一个用于可扩展数据探索和分析的开源库,特别是基因组学,为各种规模的基因组分析提供强劲支持,云原生的基因组数据框架和批处理计算。Hail需要Python 3和Java 8 JRE[1], GNU/Linux 还需要 C 和 C++标准库(如果尚未安装)。有关库的高级用法,请参阅概述[2],有关全基因组关联研究的简单示例,请参阅GWAS 教程[3],以及安装页面[4]以开始使用 Hail。
http://www.nada.kth.se/cvap/actions/ 2005年,以色列 Weizmann institute 发布了Weizmann 数据库。 数据库包含了 10个动作(bend, jack, jump, pjump, run,side, skip, walk, wave1,wave2),每个动作有 9 个不同的样本。视频的视角是固定的,背景相对简单,每一帧中只有 1 个人做动作。数据库中标定数据除了类别标记外还包括:前景的行为人剪影和用于背景抽取的背景序列。
通过前面的讲解,我们顺利的了解了GEO数据库以及如何下载其数据,得到我们想要的表达矩阵,但,这只是分析的开始,最经典的分析就是GSEA了,看看基因全局表达量的变化是否有某些特定的基因集合的倾向性。 历史目录: 解读GEO数据存放规律及下载,一文就够 解读SRA数据库规律一文就够 从GEO数据库下载得到表达矩阵 一文就够 GSEA软件的用法 这个是java软件,所以各个电脑操作系统都可以很容易安装及使用。我在生信菜鸟团博客也手把手讲解了详细操作过程,这里就不再赘述咯: 用GSEA来做基因集富集分析 http
Linux环境下的恶意软件大部分以shell脚本作为母体文件进行传播,而且,同一个病毒家族所使用的的恶意脚本往往具有极高相似性,新变种的脚本大部分是在旧变种脚本的基础上进行修改,新增或替换部分关键恶意代码,同时,不同家族之间的恶意脚本也可能出现代码互相借鉴,部分重合的情况。
今天推荐的是一个 github 项目,项目地址如下,主要是类别不平衡学习的论文、代码、框架、库等资源
众所周知,NoSQL运动旨在成为大数据时代传统关系数据库管理系统的替代品。如今Microsoft对开源的态度有所转变,RavenDB就是很好的例子。Microsoft对RavenDB(NoSQL数据库)的认可令很多人感到惊讶。RavenDB可以轻易的替代关系数据库管理系统并兼容以往的.NET应用。 NoSQL的出现与发展是非常必要的,NoSQL系统的速度和高扩展性是其具备的优势,而这并不是传统关系数据库的强项。NoSQL为Amazon、Google等需要处理大数据的公司提供行之有效的解决方案。如键值存储鼻祖
OnGene是一个肿瘤基因的数据库,通过文献检索的方式获得了803个肿瘤基因,文章的链接如下
REDIportal数据库收录了人类A-to-I类型的RNA编辑位点信息,共有4百多万个位点,称得上是最大的RNA编辑位点数据库,该数据库完全免费开放,网址如下
二、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。
我们在进行公共数据挖掘的时候,经常会碰到要对多个数据集联合分析的时候,如果想要把这些数据放到一起进行分析的话,那么首先还是需要先去除批次效应才能进行分析的。之前我们的介绍的数据库的时候,也提到了两个和批次效应有关的数据库。所以今天就来简单的介绍一下这两个数据库。
首先从豆瓣电影的“看过这部电影 的豆瓣成员”页面上来获取较为活跃的豆瓣电影用户。 链接分析 这是看过"模仿游戏"的豆瓣成员的网页链接:http://movie.douban.com/subject/
对于高维度的数据分析而言,例如RNA-seq的数据。我们在得到数据想要解释不同分组之间的差异的基因。往往都需要逐渐的降维来进行解释。最普遍的方法通过差异分析—富集分析这样的也算是一种逐步降维的操作。这样这样的分析,也有可能聚焦到很多个目标当中,比如一个通路当中有很多个基因。因为为了更好的解释高维度的数据,也就有了基因分型这样的分析方法。
前面我提到了有学员提问:新的ngs流程该如何学习之m6A学习大纲,所以我给了他优秀学员想要MeRIP-Seq/m6A-seq教程,但是他似乎是并没有主动给我投稿,不过我们的转录组授课讲师也感兴趣了这个技术,想丰富一下课程内容,所以开启了这个系列学习哈!
ARMS是一款阿里云应用性能管理(APM)类监控产品。一共提供三种监控,应用监控,前端监控,自定义监控。
在单细胞的商业化测序平台中,来自10X genomics的测序数据占据了很大的份额。相信大家在平时的科研工作中对10X数据并不陌生, 而Cell Ranger软件作为由10X官方开发的配套分析软件,颇受欢迎。今天我们就给大家介绍一下这款软件主要分析流程和使用。
本文结构 1. 概述 机器学习被广泛定义为“利用经验来改善计算机系统的自身性能”。事实上,“经验”在计算机中主要是以数据的形式存在的,因此数据是机器学习的前提和基础。数据来源多种多样,它可以是结构数据,如数值型、分类型,也可以是非结构数据,如文本、语音、图片、视频。对于所有机器学习模型,这些原始数据必须以特征的形式加入到机器学习模型当中,并进行一定的提取和筛选工作。所谓特征提取,就是逐条将原始数据转化为特征向量的形式,此过程涉及数据特征的量化表示;而特征筛选是在已提取特征的基础上,进一步对高维度和
我们经常会看到一些互联网研究公司发布的研究报告,《2016网购行为报告》、《XX类APP市场占有率报告》、《移动端社交行为报告》等等。 这些公司比较有代表性的如易观智库、艾瑞咨询、艾媒咨询等。易观在去年年底宣布完成了A轮融资,融资额为数千万元[1],艾媒则在上个月刚刚完成6000万元的融资,公司估值已经超过6亿[2],而老牌互联网研究公司艾瑞则早间有传言要在国内新三板上市[3]。 他们的报告可谓举足轻重,甚至可以影响到一个APP的钱途,所以这里面的口水仗也有很多,前年“美柚和大姨吗事件”,艾瑞和易观发布的报
对于数据库运行期间的各种状态的实时监控以及相关性能数据捕获对于解决性能问题,提高整体业务系统运行效率是至关重要的。在Oracle数据库中,实时捕获相关性能数据是通过ASH工具来实现的。ASH通过每秒钟抽取活动会话样本,为分析在最近时刻的性能问题提供最直接最有效的依据。本文主要讲述ASH的用法及使用。
最近也是在做特征筛选,有些文章还是蛮有用的,这边整理一些有用的代码给大家参考参考,具体介绍可以看正文,代码的话我保存下来了,有需要的在后台回复“特征工程”即可获取。
大家好,又见面了,我是你们的朋友全栈君。 【课程安利】人工智能课程请往下戳 如果想了解和系统学习更多人工智能、机器学习理论和项目实践,CSDN学院中有一系列精品AI课,分为大课和小课,包含数学基础、P
肿瘤作为人类健康的头号杀手,其研究的重要性不言而喻。随着芯片和NGS技术的发展,发表了很多的肿瘤相关数据。然而这些数据来自不同的组织和团队,由于缺乏统一的数据管理和组织,这些数据在发表之后就没有再利用了,为了提高数据利用率,促进肿瘤研究的发展,Oncomine的开发团队收集了各种来源的肿瘤相关的芯片数据,用标准化的分析流程处理这些数据,数据分析的结果通过web服务查询和可视化,对应的文章链接如下
How to write test with golang 代码示例 TDD(Test-Driven development) 测试驱动开发 内置的 testing 库 、 表格驱动、样本测试、TestMain 第三方:goconvey Monkey 猴子补丁 数据库 mock travisCI 代码覆盖率 TDD 快速实现功能 再设计和重构 软件测试 在指定的条件下,操作程序,发现程序错误 单元测试 对软件的组成单元进行测试,最小单位:函数 包含三个步骤: 指定输入 指定预期 函数结果和指定的预期
插值法在图像处理和信号处理、科学计算等领域中是非常常用的一项技术。不同的插值函数,可以根据给定的数据点构造出来一系列的分段函数。这一点有别于函数拟合,函数拟合一般是指用一个给定形式的连续函数,来使得给定的离散数据点距离函数曲线的总垂直距离最短,不一定会经过所有的函数点。比如在二维坐标系内,用一条直线去拟合一个平面三角形所对应的三个顶点,那么至少有一个顶点是不会落在拟合出来的直线上的。而根据插值法所得到的结果,一定是经过所有给定的离散点的。本文针对scipy和numpy这两个python库的插值算法接口,来看下两者的不同实现方案。
TANRIC整合了来自TCGA, CCLE等大型肿瘤研究项目的数据,对多种肿瘤的lncRNA表达量进行分析,差异分析,并对lncRNA与临床信息,基因组等数据进行相关性分析,文章发表在Cancer Research上,链接如下
简单翻译一下的话,就是: 批次效应是在进行实验的时候附带产生了和实验结果没有关系的数据偏差。例如, 1. 一组实验在星期一进行一次而另一组在星期二进行, 2. 两名技术人员进行相同的实验, 3. 实验当中使用了两种不同批次的试剂、芯片或仪器 以上这些都有可能产生批次效应则可能会出现批次效应。
2 逻辑回归 2.1 从线性回归到逻辑回归 分类问题可以通过 线性回归+阈值 去解决吗? image 分类问题 在有噪声点的情况下,阈值偏移大,健壮性不够 image 2.2 逻辑回归决策边界 在逻辑
集成学习(Ensemble Learning),简单来说,就是先通过一定的规则生成多个学习器,再采用某种集成策略进行组合,最后综合判断输出最终结果。一般而言,通常所说的集成学习中的多个学习器都是同质的“弱学习器”。基于该弱学习器,通过样本集扰动、输入特征扰动、输出表示扰动、算法参数扰动等方式生成多个学习器,进行集成后获得一个精度较好的“强学习器”。
由FERET项目创建,此图像集包含大量的人脸图像,并且每幅图中均只有一个人脸。该集中,同一个人的照片有不同表情、光照、姿态和年龄的变化。包含1万多张多姿态和光照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一。其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一。
这样就把内层的 dw1,... dwn 的计算使用向量化了,只用1层 for 循环,还可以做的更好,往下看
Negative Sampling 模型的CBOW和Skip-gram的原理。它相对于Hierarchical softmax 模型来说,不再采用huffman树,这样可以大幅提高性能。 一、Negative Sampling 在负采样中,对于给定的词w,如何生成它的负采样集合NEG(w)呢?已知一个词w,它的上下文是context(w),那么词w就是一个正例,其他词就是一个负例。但是负例样本太多了,我们怎么去选取呢?在语料库C中,各个词出现的频率是不一样的,我们采样的时候要求高频词选中的概率较大,而低频词选中的概率较小。这就是一个带权采样的问题。设词典D中的每一个词w对应线段的一个长度: 任何采样算法都应该保证频次越高的样本越容易被采样出来。基本的思路是对于长度为1的线段,根据词语的词频将其公平地分配给每个词语:
用requests库访问页面用get方法获取页面资源,登录页面对页面HTML进行分析,用beautifulsoup库获取并提取自己所需要的信息。再讲数据保存到CSV文件中,进行数据清洗,数据可视化分析,绘制数据图表,并用最小二乘法进行拟合分析。
为确保与国际同类数据库系统的兼容性,GSA遵循INSDC联盟的数据标准,GSA元数据类别主要包括项目信息(BioProject,归档于生物项目数据库)、样本信息(BioSample,归档于生物样本数据库)、实验信息(Experiment)、以及测序反应(Run)信息。项目信息是用来描述所开展研究的目的、涉及物种、数据类型、研究思路等信息;样本信息是指本研究涉及的生物样本描述,如样本类型、样本属性等;实验信息包括实验目的、文库构建方式、测序类型等信息;测序反应信息包括测序文件和对应的校验信息。各类数据之间采用线性、一对多的模式进行关联,从而形成“金字塔”式的信息组织与管理模式(图1)。
芯片主要以Affymetrix、Agilent、Illumina(对!Illumina不只会测序)这三家为主,而基于不同的使用目的和技术革新,每家又发布了一系列的芯片平台,以Affy为例,在GEO数据库中共有1200+个平台(每个平台在GEO中对应一个GPL*编号):
现在我们有了高质量的细胞,在将细胞聚类并确定不同的潜在细胞类型之前,我们需要执行一些步骤。我们的数据集包含来自两个不同条件(Control and Stimulated)的两个样本,因此整合这些样本有助于更好地进行比较。在此之前,我们需要归一化我们的基因表达值,并根据我们数据集中最大的变异来源跨条件排列我们的细胞。在本节中,我们将在聚类之前讨论并执行这些初始步骤。
使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。使用feature_selection库的VarianceThreshold类来选择特征的代码如下:
车辆是视频场景中最关键的对象之一,车辆 和 人 是视频检测永恒的话题。 车辆检测 是车辆分析中关键的一步,是后续进行 车型识别、车标识别、车牌识别、车辆特征 的基础。 关于检测的方法和
这一章我们聊聊大模型表格理解任务,在大模型时代主要出现在包含表格的RAG任务,以及表格操作数据抽取文本对比等任务中。这一章先聊单一的文本模态,既你已经通过OCR或者多模态等方式从PDF或者图片中获取了表格的文本数据。和前文相同,我们分别介绍微调和基于Prompt的两种方案。
作者:曹阳敏 万达网络科技 | 资深研发经理 量子位 已获授权编辑发布 转载请联系原作者 一年多以前我脑子一热,想做一款移动应用:一款给学生朋友用的“错题集”应用,可以将错题拍照,记录图像的同时,还能自动分类。比如拍个题目,应用会把它自动分类为”物理/力学/曲线运动”。 当然,这个项目其实不靠谱,市场上已经有太多“搜题”类应用了。但过程很有趣,导致我过了一年多,清理磁盘垃圾时,还舍不得删掉这个项目的“成果”,所以干脆回收利用一下,写篇文章圈圈粉。 源码地址: https://github.com/caoym
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安全也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~
上一篇《使用ML.NET模型生成器来完成图片性别识别》发布后,很多朋友希望得到源码,这里附上地址:
本文介绍了数据集相关的知识,包括常见的数据集类型、数据集划分方式、数据清洗、特征工程等。文章还提供了多个具体的数据集样例,包括手写数字识别、图像分类、文本分类等。同时,文章还探讨了数据集的质量评价方法,以及数据集在机器学习中的应用。
TensorFlow一直努力扩展自己的基础平台环境,除了熟悉的Python,当前的TensorFlow还实现了支持Javascript/C++/Java/Go/Swift(预发布版)共6种语言。 越来越多的普通程序员,可以容易的在自己工作的环境加入机器学习特征,让产品更智能。
Prometheus 是一套开源的系统监控告警框架,作为 CNCF 中重要的一员,活跃度仅次于 kubernetes,广泛用于 kubernetes 集群的监控系统中。
前面两篇文章中,我们介绍了 logistic 回归的原理和实现: Logistic 回归数学公式推导 梯度上升算法与随机梯度上升算法 本文,我们来看看如何使用 sklearn 来进行 logistic 回归呢。
近期,火绒团队截获一个由商业软件携带的病毒,并以其载体命名为“净广大师”病毒。在目前广为流行的“流量劫持”类病毒中,该病毒策略高明、技术暴力,并攻破HTTPS的“金钟罩”,让百度等互联网厂商普遍使用的反劫持技术面临严峻挑战。且该病毒驱动在”净广大师“卸载后仍然会持续加载并劫持百度搜索流量,行为及其恶劣。
随着中国互联网行业的欣欣向荣,软件推广可以带来巨大的利益,使得原本处在“黑产”中的“病毒制造者”纷纷变成软件推广渠道商,利用病毒技术和不法手段在互联网市场中大肆“吸金”。许多知名商业软件(包括某些安全软件)在明明知情的情况下,却利用病毒或黑产组织推广自家产品,并按照推广效果向病毒制造者支付大量费用,这是病毒组织疯狂作恶的最大动力。可以说,是知名软件公司们“喂养”着众多病毒制造者。
大数据文摘作品,转载要求见文末 作者 | 宁云州、钱天培 了解过去一周AI爆点,一篇就够了! 从本周起,大数据文摘将在每周二为你带来AI大事件专栏,总结过去一周中AI届的热点。 过去的一周中AI圈都发生了什么?大佬们互撕了哪些问题?研究者们发布了哪些值得一读的论文?又有哪些开源的代码和数据库可以使用了? 就让文摘菌为你盘点上周的AI大事件吧~ 新闻 微软发布深度学习加速平台Brainwave,欲实现实时AI 来源:www.microsoft.com Brainwave是一个基于FPGA的深度学习系统,能够实
领取专属 10元无门槛券
手把手带您无忧上云