首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    spssk均值聚类报告_K均值聚类

    机器学习中的k均值聚类属于无监督学习,所谓k指的是簇类的个数,也即均值向量的个数。算法初始状态下,要根据我们设定的k随机生成k个中心向量,随机生成中心向量的方法既可以随机从样本中抽取k个样本作为中心向量,也可以将中心向量固定在样本的维度范围之内,避免中心向量过偏远离大多数样本点。然后每个样本点需要与k个中心向量分别计算欧氏距离,取欧氏距离最小的中心向量作为该样本点的簇类中心,当第一轮迭代完成之后,中心向量需要更新,更新的方法是每个中心向量取前一次迭代所得到各自簇类样本点的均值,故称之为均值向量。迭代终止的条件是,所有样本点的簇类中心都不在发生变化。 在spss中导入的二维数据如下所示:

    02
    领券