因为在前面几期的分享中,大家看到的更多是HDFS的底层原理,内部结构,并没有谈到其自身优势和劣势的一个比较!因此,本次小菌为大家带来的就是HDFS的特性以及缺点分析。
本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!
文章目录 HDFS的特性 HDFS的缺点 HDFS的特性 海量数据存储 :HDFS 可横向扩展,其存储文件可以支持PB级别数据 高容错性 :节点丢失,系统依然可用,数据保存多个副本,副本丢失后自动恢复。可建构在廉价(与小型机大型机比)的机器上,实现线性扩展(随着节点数量的增加,集群的存储能力增加) 大文件存储 :DFS采用数据块的方式存储数据,将一个大文件切分成多个小文件,分布存储 HDFS的缺点 不能做到低延迟数据访问:HDFS 针对一次性读取大量数据继续了优化,牺牲了延迟性。 不适合大量的小文件存储:
HDFS采用Master/Slave的架构来存储数据,这种架构主要由四个部分组成,分别为HDFS Client、NameNode、DataNode和Secondary NameNode。下面我们分别介绍这四个组成部分:
面对各行各业日益增长的数据量,普通的机器无论在存储空间还是管理能力上都显得力不从心。既然单台机器的资源有限,那么增加机器的方式是否可行?答案是肯定的,于是乎出现了分布式的概念。分布式文件管理系统便可以将一堆机器组合在一起,并隐藏细节,让用户感觉与之前单机储存文件毫无差别,但其实文件是通过网络来访问的。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』
**分布式存储:**通过网络使用企业中的每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在企业的各个角落。
之前在进行对接存储项目的时候,对公司内部使用的文件系统进行了梳理,当前公司内部使用的文件系统有GlusterFS,FastDFS等,由于文件系统在海量小文件和高并发之下性能急剧下降,性能遭遇瓶颈,因此打算建设分布式对象存储平台。下面对市面上比较流行的非结构化文件存储产品进行相关整理和比较。
在这个数据爆炸的时代,产生的数据量不断地在攀升,从GB,TB,PB,ZB.挖掘其中数据的价值也是企业在不断地追求的终极目标。但是要想对海量的数据进行挖掘,首先要考虑的就是海量数据的存储问题,比如Tb量级的数据。
因为在上期的分享中,大家看到的更多是HDFS的底层原理,内部结构,并没有谈到其自身优势和劣势的一个比较!因此,本次博主为大家带来的就是对HDFS的优缺点进行分析。 一. HDFS的优点 1. 高容错
前面我们分析存储方案的发展的时候有提到分布式文件存储的出现是为了解决存储的三大问题:可扩展性,高吞吐量,高可靠性
在分布式存储技术体系当中,分布式文件存储是其中的分类之一,也是大数据架构当中常常用到的。得益于Hadoop的高人气,Hadoop原生的HDFS分布式文件系统,也广泛为人所知。但是分布式文件存储系统,并非只有HDFS。今天的大数据开发分享,我们就主要来讲讲常见的分布式文件存储系统。
HDFS(Hadoop Distributed File System)是Hadoop项目的核心子项目,首先它是一个文件系统,用于存储文件,通过目录树来定位文件位置;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
在分布存储式存储技术体系当中,分布式文件存储是其中的分类之一,也是大数据架构当中常常用到的。得益于Hadoop的高人气,Hadoop原生的HDFS分布式文件系统,也广泛为人所知。但是分布式文件存储系统,并非只有HDFS。今天的大数据开发分享,我们就主要来讲讲常见的分布式文件存储系统。
Hadoop分布式文件管理系统。旨在对不同系统上的文件进行统一的管理。它是一个文件系统,用于存储文件,通过目录树来定位文件,其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
因此,业界也出现了一系列其他分布式存储系统,最常见的是HDFS、GlusterFS和Openstack Swift。
分布式是将资源分布存储或者分布计算的统称,分布式是指资源不再单一的再单独的服务器上进行存储或者计算, 而是通过很多服务器来进行存储或者计算
课程链接:https://www.imooc.com/video/16287 Hadoop简介 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。 详情见:Hadoop基本介绍 一、 HDFS概念及优缺点 应用场景与特点 普通的成百上千的机器 按TB甚至PB为单位的大量的数据 简单便捷的文件获取 HDFS概念 数据块是抽象块而非整个文件作为存储单元,默认大小为64MB,一般设置为128M,备份
块存储一般体现形式是卷或者硬盘(比如windows的c盘),数据是按字节来访问的,对于块存储而言,对里面存的数据内容和格式是完全一无所知的。好比上面图中,数据就像玉米粒一样堆放在块存储里,块存储只关心玉米粒进来和出去,不关心玉米粒之间的关系和用途。
如果一个文件大小为10K,则1亿个文件大小仅为1TB(但要消耗掉NameNode 20GB内存)
前一段时间,小菌陆续分享了HDFS系列1-12的博客,总算是要完结了。于是小菌打算再出一期关于HDFS的经典面试题,其中的内容大多都出自于在前面分享的博客中,感兴趣的小伙伴们可以自行浏览,链接小菌放到文末了哦~
随着数据量越来越大,在一个操作系统存不下所有的数据,那么分配到更多的操作系统管理磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。
我们都知道HDFS是来源于Google的GFS的分布式系统,它的特点是易于扩展,同时可以开发于廉价的机器上,同时他可以保证所有文件的备份数据维持在健康的数量上,同时非常适合进行批处理,因为设计之处就是在大数据文件大量的操作是顺序读的操作,同时也非常适合流处理。
优点: 1.处理超大文件 能用来存储管理PB级的数据 1PB = 1024TB 2.处理非结构化数据、半结构化数据、结构化数据 流式的访问数据 一次写入、多次读取 3.运行于廉价的商用机器集群上 可运行在低廉的商用硬件集群上 故障时能继续运行且不让用户察觉到明显的中断
1、联网设备增加 数据量随之上升 大数据时代来了。当所有人都争吵着这件事情的时候,当所有企业都看好大数据的发展前景的时候,却都很少关注这些数据从哪儿来,我们有没有足够优秀的技术能力处理这些数据。 联网设备增加 数据量随之上升 网络的发展无疑为我们迎接大数据时代、智能计算时代铺好了路。根据研究公司的预测,全球联网设备正在增加,在部分国家,人均联网设备早已超过2台;如此大量的联网设备和不断提高的网络速度都在让社会的数据量快速增长,智慧城市、平安城市的实现也是以视频监控等视频数据为基础,成为大数据时
在使用Hadoop过程中,小文件是一种比较常见的挑战,如果不小心处理,可能会带来一系列的问题。HDFS是为了存储和处理大数据集(M以上)而开发的,大量小文件会导致Namenode内存利用率和RPC调用效率低下,block扫描吞吐量下降,应用层性能降低。通过本文,我们将定义小文件存储的问题,并探讨如何对小文件进行治理。
对于一个企业大数据应用来说,搞定了大数据存储基本上就解决了大数据应用最重要的问题。Google 三驾马车的第一驾是GFS,Hadoop最先开始设计的就是HDFS,可见分布式存储的重要性,整个大数据生态计算框架多种多样,但是大数据的存储却没有太大的变化,HDFS依旧是众多分布式计算的基础。当然HDFS也有许多缺点,一些对象存储等技术的出现给HDFS的地位带来了挑战,但是HDFS目前还是最重要的大数据存储技术,新的计算框架想要获得广泛应用依旧需要支持HDFS。大数据数据量大、类型多种多样、快速的增长等特性,那么HDFS是如何去解决大数据存储、高可用访问的了?
HDFS(Hadoop Distributed File System)的读写流程如下:
在当今数据时代,数据的存储和处理已经成为了各行各业的一个关键问题。尤其是在大数据领域,海量数据的存储和处理已经成为了一个不可避免的问题。为了应对这个问题,分布式文件系统应运而生。Hadoop分布式文件系统(Hadoop Distributed File System,简称HDFS)就是其中一个开源的分布式文件系统。本文将介绍HDFS的概念、架构、数据读写流程,并给出相关代码实例。
本文编译自IBM开发者社区,主要介绍了HDFS中小的ORC和Parquet文件的问题,以及这些小文件如何影响Big SQL的读取性能,并探索了为了提高读取性能,使用现有工具将小文件压缩为大文件的可能解决方案。
前言 前面几篇简单介绍了什么是大数据和Hadoop,也说了怎么搭建最简单的伪分布式和全分布式的hadoop集群。接下来这篇我详细的分享一下HDFS。 HDFS前言: 设计思想:(分而治之)将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析。 在大数据系统中作用:为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务。 分布式文件系统: 问题引发:海量数据超过了单台物理计算机的存储能力 解
Hadoop是一个使用JAVA开发的开源框架,是一个可以分析和处理海量数据的软件平台。它允许在整个集群使用简单编程模型计算机的分布式环境存储并处理大数据。它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储。
“ Hadoop 可以看成是 HDFS + MapReduce + Yarn组成,其中HDFS作为分布式文件系统被用到了很多其他系统,本文将简要介绍HDFS的概念和架构”
spark Streaming
1)跟NN通信查询元数据(block所在的DN的节点),找到文件块所在的DN的服务器。2)挑选一台DN(就近原则,然后随机)服务器,请求建立socket流。3)DN开始发送数据(从磁盘里读取数据放入流,一packet为单位做校验) 4)客户端以packet为单位接收,现在本地缓存,然后写入目标文件中,后面的block块就相当于append到前面的block块,最后合成最终需要的文件。
上一篇文章为大家总结了一些关于Hive的热门考点,得到了一些朋友的肯定与转发,菌菌就觉得花时间去做这些知识整合是非常有价值,有意义的一件事。本篇文章,让我们有幸一起来阅读一下,该怎么准备Hadoop的内容,才有机会在面试过程占据上风。
海量小文件问题是工业界和学术界公认的难题,大数据领域中的小文件问题,也是一个非常棘手的问题,仅次于数据倾斜问题,对于时间和性能能都是毁灭性打击。本文参考网上对于小文件问题的定义和常见系统的解决方案,给大家还原一个大数据系统中小文件问题的系统性解决方案。
OSS(Object Storage Service)俗称对象存储,主要提供图片、文档、音频、视频等二进制文件的海量存储功能。目前除了公有云提供对象存储服务外,一般私有云比较关心一些开源的分布式对象存储解决方案,本文列举了一些常见的技术方案供参考。
前面几篇简单介绍了什么是大数据和Hadoop,也说了怎么搭建最简单的伪分布式和全分布式的hadoop集群。接下来这篇我详细的分享一下HDFS。
HDFS作为分布式文件系统的代表性产品,在大数据学习当中的重要性是不言而喻的,基于Hadoop基础架构,HDFS更是得到了广泛的认可,在大规模离线数据处理上,提供稳固的底层支持。今天的大数据开发技术分享,我们就主要来讲讲HDFS Namenode元数据管理。
接下来还有很多大数据组件的灵魂拷问 准备好了吗?各位小伙伴们!!! 咱们下期再见!
Hadoop分布式文件系统(HDFS)是指被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统(Distributed File System)。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。HDFS放宽了一部分POSIX约束,来实现流式读取文件系统数据的目的。HDFS在最开始是作为Apache Nutch搜索引擎项目的基础架构而开发的。HDFS是Apache Hadoop Core项目的一部分。
从用户角度看,存储就是一块盘或者一个目录,用户不关心盘或者目录如何实现,用户要求非常“简单”,就是稳定,性能好。为了能够提供稳定可靠的存储产品,各个厂家推出了各种各样的存储技术和概念。为了能够让大家有一个整体认识,本文先介绍存储中的这些概念。
过去的相当长的一段时间里,商用对象存储占据了市场上的大量的份额。国外的Amazon S3,国内的阿里云OSS都成为了大多数公司的选择。但是构建一个企业级的数据湖(包括结构化和非结构化数据)已经成为了越来越多公司的目标。那么Hadoop还能满足我们的要求吗?还是我们需要更多的选择?
1高容错性 一台宕机没有什么问题,不会造成一个数据整体丢失。 丢失的部分数据丢失会很快从其他节点拉取并回复。 2合存储大数据量的文件 数量级 GB TB PB都支持 件规模 适合存储百万规模的数据 3硬件价格低廉 可以使用廉价的物理机
随着互联网、云计算及大数据等信息技术的发展,越来越多的应用依赖于对海量数据的存储和处理,如智能监控、电子商务、地理信息等,这些应用都需要对海量图片的存储和检索。由于图片大多是小文件(80%大小在数MB以内),以GFS、HDFS为代表的适用于流式访问大文件的分布式存储系统,若直接用来存储图片,由于元数据膨胀,在扩展性和性能方面均存在严重问题。
谈到Hadoop的起源,就不得不提Google的三驾马车:Google FS、MapReduce、BigTable。虽然Google没有公布这三个产品的源码,但是他发布了这三个产品的详细设计论文,奠定了风靡全球的大数据的基础!
01 — HDFS设计目的 A distributed file system that provides high-throughput access to application data. HDFS(Hadoop Distributed File System )是Hadoop分布式文件系统,设计目的是为了存储超大文件,主要是针对几百MB,GB,甚至TB的文件,流式读取方式,主要是针对一次写入,写入的过程使用的是append的方式,多次读出的使用模式。 该分布式系统构建在普通PC机组成的集群上,大大降
领取专属 10元无门槛券
手把手带您无忧上云