将 Kubernetes 控制平面作为 Pod 托管可以为多集群和边缘用例启用(并简化)操作。但是,会带来一些新的要求和问题。而且标准可能来得比较慢。
二:安装npm cordova-hot-code-push-cli 用于生成项目文件的md5码进行比对版本升级
文章来源 http://blog.csdn.net/zhuzhiqiang_zhu/article/details/53608398 一、添加插件 说明:在这个步骤里面,以下的命令需要在项目根目录下执行 ● 新建Cordova项目 ○ cordova create CordovaHotCode com.ezample.hotcode ● 添加android平台 ○ cordova platform add android ● 添加iOS平台 ○ cordova platform add ios ● 添加自动更新插件 ○ cordova plugin add cordova-hot-code-push-plugin ● 添加cordova hot code push客户端,用于生成www目录下文件的hash码,更新的时候对比使用。(注意:安装过就不用在安装了) ○ npm install -g cordova-hot-code-push-cli 二、配置
近年来,基于扩散模型(Diffusion Models)的图像生成模型层出不穷,展现出令人惊艳的生成效果。然而,现有相关研究模型代码框架存在过度碎片化的问题,缺乏统一的框架体系,导致出现「迁移难」、「门槛高」、「质量差」的代码实现难题。
不可靠:是将数据报的分组从一台主机发送到另一台主机,但并不保证数据报能够到达另一端,任何必须的可靠性都由应用程序提供。
样例代码:http://download.csdn.net/download/tmaskboy/9947368
详细绘制基因和环境对功能连接体的影响是发展基因与临床诊断或认知能力之间的中间表型的关键一步。我们分析了来自两个成年双胞胎样本的静息状态功能磁共振成像数据,以量化遗传和环境对264个大脑区域(35000个功能连接)之间所有成对功能连接的影响。整个连接体的非共享环境影响较高。大约有14-22%的连接在每个样本中具有显著的遗传影响,4.6%的连接在两个样本中显著,12%的遗传力估计大于30%。共享环境影响的证据是微弱的。一种新的全连接体双变量遗传建模程序揭示,连接上的遗传影响不同于连接体整体总结测量、基于网络的连接估计和静息状态扫描期间的运动的遗传影响。大脑的遗传结构是多样的,并不像人们想象的那样,仅仅依靠非遗传信息数据或低分辨率数据的结构。作为后续研究,我们对功能连接进行了新的分类,并研究了具有特别强遗传影响的高度局部性连接。这种脑连通性的高分辨率遗传分类学将有助于理解基因对脑疾病的影响。
HCP: A Flexible CNN Framework for Multi-Label Image Classification
湍流促进了物理系统中跨尺度的能量/信息快速传输。这些特性对大脑功能很重要,但目前尚不清楚大脑内部的动态主干是否也表现出动荡。利用来自1003名健康参与者的大规模神经成像经验数据,我们展示了类似湍流的人类大脑动力学。此外,我们还建立了一个耦合振荡器的全脑模型,以证明与数据最匹配的区域对应着最大发达的湍流样动力学,这也对应着对外部刺激处理的最大敏感性(信息能力)。该模型通过遵循作为布线成本原则的解剖连接的指数距离规则来显示解剖学的经济性。这在类似湍流的大脑活动和最佳的大脑功能之间建立了牢固的联系。总的来说,我们的研究结果揭示了一种分析和建模全脑动态的方法,表明一种湍流样的动态内在主干有助于大规模网络通信。 2.简介
边缘计算到底是什么?它如何与5G及相关技术堆栈协同工作?我们现在都生活在云计算时代。我们都使用的在线服务——亚马逊网络服务(AWS)、谷歌云平台、微软Azure和许多其他服务——严重依赖这项技术。然而,随着5G的推出,以及我们对物联网设备的用途和使用量的增加,对云网络的压力再大不过了。在COVID-19中,我们曾多次看到云服务因意外负载而失败,而且可能会再次出现激增。 不幸的是,网络压力的增加不可避免地会给带来我们不便之处。由于通信量大,处理数据所需的时间也会增加,而且我们常常要处理高网络延迟。为了解决这个
IOCP底层机理还没有透彻的理解,现将部分内容记录如下 2014.7.22 16:50
自诞生以来,分布式存储就被视为存储的未来,被万众期待。然而分布式存储起步于寒门,最早应用于互联网日志、企业备份归档、开发测试等场景,追求极致成本,性能和可靠性却不敢恭维。但它还算争气,凭借多年的打怪练级,越来越多地开始承载自动驾驶研发、超高清编辑、运营商5G网络云等企业的关键业务,走上变成高富帅、赢取白富美的道路。
---- 将 ScienceAI 设为星标 第一时间掌握 新鲜的 AI for Science 资讯 ---- 编辑 | 绿萝 氢是宇宙中最为丰富的元素。从外太空到恒星,再到地球上的许多物质,氢无处不在。 氢是元素周期表中的第一个元素,它的单个原子也是所有元素中最简单的,只有一个质子和一个电子。 对于伊利诺伊大学厄巴纳-香槟分校(UIUC)的物理学教授 David Ceperley 来说,这使得氢成为构建和测试物质理论的自然起点。他使用计算机模拟来研究氢原子如何相互作用和结合以形成固体、液体和气体。然而
过去几十年里,研究者对于对抗的脑状态是不是人脑活动组织的基本原则一直有争议。一些人认为内在的静息态功能连接反相关脑网络是预处理的人为结果。一些人认为这种反相关有生物学意义的,它是大脑对不同刺激如何作出反应的预测因子。本研究调查了不同任务的全脑共激活模式,检验了任务态脑区显示的反相关是否与静息态相似。我们检查了HCP(N=680)中47个任务对比的脑活动,发现网络间鲁棒的对抗互联。默认网络的脑区表现出最高的皮层相关的负连接度。这种跨任务的负共激活模式与全局信号回归(GSR)处理的静息态数据结果一致。经过GSR的静息态数据是任务诱发的调节的更好的预测因子。最后,在25个抑郁症病人的队列中,我们发现DLPFC和人体大脑亚属前扣带皮层的基于任务的反相关与DLPFC-TMS的临床效果有关。总之,我们的发现说明反相关是有生物学意义的现象,可能反映了重要的功能性脑组织原则。
人类眶额皮层、腹内侧前额叶皮层(vmPFC)和前扣带回参与奖赏处理,因此参与情绪,也与情景记忆有关。为了更好地了解这些区域,我们在来自人类连接体项目的172人中测量了360个皮层区域和24个皮层下区域之间的有效连接,并补充了功能连接和扩散束造影。眶额皮层从味觉、嗅觉和颞叶视觉、听觉和颞极皮层区域都有有效连接。眶额皮层与前扣带回膝部和海马体系统有连接,并提供了用于记忆和目标导航的奖赏反映。眶额皮层和扣带回膝部与上前扣带回有连接,该皮层投射到中扣带回和其他运动前皮层区域,并提供行动-结果学习,包括肢体退缩或对抗厌恶和非奖励刺激。外侧眶额皮层有输出到额下回的语言系统。内侧眶额皮层连接到Meynert基底核和上前扣带回连接到隔膜,这些皮层区域的损伤可能通过破坏新皮层和海马体的胆碱能功能而导致记忆障碍。
近期,新加坡国立大学、字节跳动智能创作新加坡团队等机构合作的一项技术成果被全球顶级学术期刊Nature的子刊Nature Neuroscience收录。这项研究首次将人工智能领域的元学习方法引入到神经科学及医疗领域,能在有限的医疗数据上训练可靠的AI模型,提升基于脑成像的精准医疗效果。 研究背景 脑成像技术是神经科学发展的一个重要领域,能够直接观察大脑在信息处理和应对刺激时的神经化学变化、从而对疾病的诊断和治疗提供重要参照。理论上,基于脑成像的机器学习模型可应用于预测个人(individual)的一些非
来源:量子位(公众号id:qbitai)本文约2600字,建议阅读9分钟脑成像技术是神经科学发展的一个重要领域,能够直接观察大脑在信息处理和应对刺激时的神经化学变化、从而对疾病的诊断和治疗提供重要参照。 近期,新加坡国立大学、字节跳动智能创作新加坡团队等机构合作的一项技术成果被全球顶级学术期刊Nature的子刊Nature Neuroscience收录。这项研究首次将人工智能领域的元学习方法引入到神经科学及医疗领域,能在有限的医疗数据上训练可靠的AI模型,提升基于脑成像的精准医疗效果。 研究背景 脑
T客汇官网:tikehui.com 撰文 | 人称T客 前不久有海外媒体报道,联想获得SAP HANA平台在中国运营权,其中负责构建和运营工作完全甩给了联想,其中运营权限都包括哪些内容,值得探讨?SA
即使在信息技术显著发展的情况下,基于自我报告的特征和偏好来预测异性恋个体最初的相容性也并不成功。为了克服自我报告测量和预测相容性的局限性,我们使用了来自静息状态功能磁共振成像(fMRI)数据的功能连接,这些数据携带丰富的个体特异性信息,足以预测社会认知任务中的心理构建和激活模式。在从静息态功能磁共振成像(fmri)中收集数据的几天后,参与者进行了一个快速约会实验,在这个实验中,他们与其他所有异性参与者进行3分钟的快速约会。我们的机器学习算法成功地预测了实验中的成对是否兼容,使用实验前获得的功能连接的(不)相似性。个体之间功能连接的相似性和差异性以及这些多元关系有助于预测,因此表明了互补性(观察到的差异性)的重要性,以及个体与潜在伴侣在最初吸引阶段的相似性。结果表明,突显网络、边缘区域和小脑对相容感尤为重要。这项研究强调了神经信息在社会环境中预测复杂现象的效用,而单凭行为测量是无法预测的。
---- 新智元报道 编辑:LRS 好困 【新智元导读】目标检测的对抗攻击怎么防?中山大学HCP实验室入选ECCV 2022 Oral的最新论文教你提升模型鲁棒性! 现有的深度学习模型容易受到恶意攻击或者噪声的影响,甚至对于人眼无法察觉的对抗噪声干扰,输出完全错误的结果,这就对基于深度学习的模型在实际中应用带来了严重的安全隐患。 因此提高神经网络的对抗鲁棒性,让模型具有更强的抵御对抗噪声的能力至关重要。 但现有相关对抗攻击和防御的视觉问题研究主要集中在分类任务,而对目标检测器的对抗鲁棒性相关研究
GNN是Graph Neural Network的简称,是用于学习包含大量连接的图的联结主义模型。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统甚至生命科学等各个领域得到了越来越广泛的应用。GNN在对图节点之间依赖关系进行建模的强大功能,使得与图分析相关的研究领域取得了突破。当信息在图的节点之间传播时GNN会捕捉到图的独立性。
大脑的功能连接(FC)已被证明在会话中表现出微妙但可靠的调节。估计时变FC的一种方法是使用基于状态的模型,该模型将fMRI时间序列描述为状态的时间序列,每个状态都有一个相关的FC特征模式。然而,从数据对这些模型的估计有时不能以一种有意义的方式捕获变化,这样模型估计将整个会话(或它们的最大部分)分配给单个状态,因此不能有效地捕获会话内的状态调制;我们将这种现象称为模型变得静态或模型停滞。在这里,我们的目标是量化数据的性质和模型参数的选择如何影响模型检测FC时间变化的能力,使用模拟fMRI时间过程和静息状态fMRI数据。我们表明,主体间FC的巨大差异可以压倒会话调制中的细微差异,导致模型成为静态的。此外,分区的选择也会影响模型检测时间变化的能力。我们最后表明,当需要估计的每个状态的自由参数数量很高,而可用于这种估计的观测数据数量较低时,模型往往会变成静态的。基于这些发现,我们针对时变FC研究在预处理、分区和模型复杂性方面提出了一套实用的建议。
扩散模型已经成为了主流的文本到图像生成模型,可以基于文本提示的引导,生成高质量且内容丰富的图像。
本文提供了一个使用开源神经影像数据集的协议。涵盖了一个公开数据项目的所有阶段,包括数据的下载到结果的撰写,以及在公共存储库和预印本上共享数据和结果。
导读 人类大脑在许多认知以及行为等方面都表现出明显的性别差异,这些差异具有可重复性,而且更为重要的是,这些差异或许可以反映不同性别间大脑内部局部组织的不同。这些差异的稳定性、起因以及产生的影响被广泛、热烈的讨论,但却没有被细致的研究过。加之最近在啮齿类动物中的一系列研究建立了性别差异在神经生理学上的理论基础:1)局部灰质体积(regional gray matter volume,regional GMV)的性别差异稳定的分布在大脑皮层以及一些经典的皮下核团;2)与社交以及生殖行为有关的神经环路在局部GMV差异分布中占据主导地位;3)性染色体的基因表达与GMV差异模式具有耦合关系。这篇发表在美国科学院院报(PNAS)题为“Integrative structural, functional, and transcriptomic analyses of sex-biased brain organization in humans”的文章,便是基于啮齿类动物中的研究基础,针对在人类大脑中该类问题的研究空白,对性别差异从脑结构、脑认知活动以及基因表达多模态多尺度做了全方位细致的探究。下面即对本文作解读。
大脑功能网络的活动是时变认知和行为的基础。研究证实,静息功能磁共振成像中的时变相关性(即功能连通性)可以预测行为特征、精神疾病和神经系统疾病。本文提出了一种研究方法,将平均大脑活动和功能连接(FC)的变化建模为能够在不同的时间相互发生。本文将这种方法称为多动态对抗生成器-编码器(MAGE)模型,在fMRI数据上使用生成对抗网络的原理进行评估,并可以捕获时间依赖性的网络动态模型。
一、导读 熟悉认知神经科学的人一看到VWFA,瞬间想到这是一个与词形加工有关的脑区,当然也有一些观点认为VWFA在复杂的视觉处理中也起着重要作用。然而,对于VWFA的结构和功能环路及其与行为的关系的一直不太明了。近期发表于Nature Communications杂志、题目为《The visual word form area (VWFA) is part of both language and attention circuitry》的一项研究回答了这个问题。该项研究中,研究者使用来自HCP(译者注:HCP是一个为期五年的项目。该项目于2009年7月启动,是NIH神经科学研究蓝图中三大挑战的第一个。该项目的目标是建立一个“网络图”,揭示健康的人类大脑内的解剖和功能连通性,以及生成的数据,以促进研究脑部疾病,如阅读障碍,自闭症,阿尔茨海默氏症和精神分裂症)的高分辨率多模态成像数据(N=313),证明了VWFA与规范语言和注意网络具有稳健的连接模式。脑与行为的关系揭示了显著的双重分离模式: VWFA与侧颞语言网络的结构连接能够预测语言,但不能预测视觉-空间注意能力; VWFA与背侧额顶叶注意网络的连接能够预测视觉-空间注意,但不能预测语言能力。该项研究的发现支持了VWFA功能的一个多重模型,该模型以整合语言和注意的独特回路为特征,并指出连接受限认知是人类大脑组织的一个关键原则。
【新智元导读】今天Nature刊文,华盛顿大学研究人员结合多种成像技术,利用机器学习系统,绘制了全新的人脑图谱。通过使用更精确的划分方法,研究人员证实了此前已经确定的 83 个脑区,还发现了 97 个全新的脑区。学界权威评论称,这是朝向理解人脑组织和功能结构的“超凡一步”,有望成为今后描述人脑的基础。更重要的是,该项目使人工智能上升到一个新的阶段:利用脑图谱,在智能系统设计方面,可以明确脑功能基本单元的划分及其连接模式,从多尺度揭示脑信息处理机制,为新型智能信息处理系统的设计提供启示。 7月21日,Natu
摘要:由弥散磁共振成像(dMRI)衍生的大脑结构网络反映了大脑区域之间的白质连接,可以定量描述整个大脑的解剖连接模式。结构性脑连接组的发展导致了大量dMRI处理包和网络分析工具箱的出现。然而,基于dMRI数据的全自动网络分析仍然具有挑战性。在这项研究中,我们开发了一个名为“扩散连接组管道”(DCP)的跨平台MATLAB工具箱,用于自动构建大脑结构网络并计算网络的拓扑属性。该工具箱集成了一些开发的软件包,包括 FSL、Diffusion Toolkit、SPM、Camino、MRtrix3和MRIcron。它可以处理从任意数量的参与者那里收集的原始dMRI数据,并且还与来自HCP和英国生物样本库等公共数据集的预处理文件兼容。此外,友好的图形用户界面允许用户配置他们的处理管道,而无需任何编程。为了证明DCP的能力和有效性,使用DCP进行了两次测试。结果表明,DCP可以重现我们之前研究的发现。但是,DCP存在一些局限性,例如依赖 MATLAB 并且无法修复基于度量的加权网络。尽管存在这些局限性,但总体而言,DCP软件为白质网络构建和分析提供了标准化的全自动计算工作流程,有利于推进未来人脑连接组学应用研究。
磁共振成像(MRI)已经改变了我们对人类大脑的理解,通过对特定结构的能力(例如,损伤研究)和功能(例如,任务功能MRI (fMRI))的复制映射。心理健康研究和护理还没有从核磁共振成像中实现类似的进步。一个主要的挑战是复制大脑结构或功能的个体间差异与复杂的认知或心理健康表型之间的关联(全脑关联研究(BWAS))。这样的BWAS通常依赖于适合经典脑成像的样本量(中位神经成像研究样本量约为25),但对于捕捉可复制的脑行为表型关联可能太小了。在这里,我们使用了目前最大的三个神经成像数据集,总样本量约为50,000人,以量化BWAS效应大小和可重复性作为样本量的函数。BWAS的关联比之前认为的要小,导致了统计上的研究不足,效应大小和典型样本量的复制失败。随着样本量增加到数千个,复制率开始提高,效应大小信息减少。功能性MRI(对比结构)、认知测试(对比心理健康问卷)和多变量方法(对比单变量)检测到更强的BWAS效应。小于预期的脑表型关联和人群亚样本的变异性可以解释广泛的BWAS复制失败。与影响更大的非BWAS方法(例如,损伤、干预和个人)相比,BWAS的可重复性需要数千个人的样本。
所见不一定是所得. 今天终于活久见, 看上去是一样的, 但是实际就是不一样还差一个字符。 那看见下面一个图片,下面一个图片,嗯是返回的一串字符串,我要判断它们相等,肉眼看上去是完全相等的,但是实际上,它们是不相等的,所以在判断相等的时候始终返回嗯 False 。
结构相似性是磁共振成像(MRI)皮层连接组学日益关注的焦点。在这里,我们提出了形态测量逆散度(MIND),一种新的方法,基于它们的差异来估计皮层区域之间的相似性。与之前跨越3个人类数据集和1个猕猴数据集的11000次扫描的形态相似网络(MSNs)方法相比,MIND网络更可靠,更符合皮层细胞结构和对称性,与轴突连接束追踪测量更相关。来自人类T1加权MRI的MIND网络比MSNs或来自束状融合加权MRI的网络对年龄相关的变化更敏感。皮层区域之间的基因共表达与MIND网络的共表达比与MSNs网络或束造影的耦合更强。MIND网络表型也更具遗传性,特别是结构分化区域之间的连边。MIND网络分析为使用现成的MRI数据的皮层连接组学提供了一个经过生物学验证的透镜。
基于受试者的功能性连接组(FC)的个体特征(即“FC指纹”)已经成为当代神经科学研究的一个非常热门的目标,但脑磁图(MEG)数据中的FC指纹还没有得到广泛的研究。本研究中,我们研究来自人类连接组计划(HCP)的静息状态的MEG数据,以评估脑磁图FC指纹及其与包括振幅和相位耦合的功能连接指标、空间渗漏校正、频带和行为意义在内的几个因素的关系。为此,我们首先使用两种识别评分方法,区分识别率和成功率,为每个FC测量提供定量指纹评分。其次,我们探索了横跨不同频段(δ、θ、α、β和γ)的边缘和节点的MEG指纹模式。最后,我们研究了从同一受试者的MEG和fMRI记录中获得的跨模态指纹模式。我们的结果表明,指纹识别的性能在很大程度上取决于功能连接指标、频带、识别评分方法和空间渗漏校正。本研究初步提供了MEG指纹与不同方法学和电生理因素相关的第一个特征,并有助于理解指纹的跨模态关系。
机器之心专栏 机器之心编辑部 中山大学人机物智能融合实验室(HCP)在 AIGC 及多模态大模型方面成果丰硕,在近期的 AAAI 2023、CVPR 2023 先后入选了十余篇,位列全球研究机构的第一梯队。 其中一个工作实现了用因果模型来显著提升多模态大模型在调优中的可控及泛化性——《Masked Images Are Counterfactual Samples for Robust Fine-tuning》。 链接:https://arxiv.org/abs/2303.03052 使用预训练的大规模
领取专属 10元无门槛券
手把手带您无忧上云