之前对于使用Phoenix查询Hbase大表数据一直卡死,于是搁置了好久,昨晚终于尝试了一下,完美搞定,本节文章来使用4种方法对比Hbase查询性能。
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 在前面的博文里,我已经介绍了 Hive和HBase分别是什么? Apache Hive是一个构建在Hadoop基础设施之上的数据仓库。通过Hive可以使用HQL语言查询存放在HDFS上的数据。HQL是一种类SQL语言,这种语言最终被转化为Map/Reduce. 虽然Hive提供了SQL查询功能,但是Hive不能够进行交互查询--因为它只能够在Haoop上批量的执行Hadoop。 Apache HBase是一种Key/Value系统,它运行在HD
前言随着腾讯产品与技术的发展,几乎任何一个与用户相关的在线业务的数据量都在亿级别,每日系统调用次数从亿到百亿,对海量数据的高效插入和快速读取变得越来越重要。而传统关系型数据库模式固定、强调参照完整性、数据的逻辑与物理形式相对独立等,比较适用于中小规模的数据,但对于数据的规模和并发读写方面进行大规模扩展时,RDBMS性能会大大降低,分布式更为困难。 为什么会选择HBase? 高可靠性。HBase是运行在Hadoop上的NoSQL数据库,它的数据由HDFS做了数据冗余,具有高可靠性。同时TDW(腾讯分布式数据仓
前言 随着腾讯产品与技术的发展,几乎任何一个与用户相关的在线业务的数据量都在亿级别,每日系统调用次数从亿到百亿,对海量数据的高效插入和快速读取变得越来越重要。而传统关系型数据库模式固定、强调参照完整性、数据的逻辑与物理形式相对独立等,比较适用于中小规模的数据,但对于数据的规模和并发读写方面进行大规模扩展时,RDBMS性能会大大降低,分布式更为困难。 为什么会选择HBase? 高可靠性。HBase是运行在Hadoop上的NoSQL数据库,它的数据由HDFS做了数据冗余,具有高可靠性。同时TDW(腾讯分布式数据
hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 ---- 对于HBase而言,如果想精确地定位到某行记录,唯一的办法是通过rowkey来查询。如果不通过rowkey来查找数据,就必须逐行地比较每一列的值,即全表扫瞄。对于较大的表,全表扫描的代价是不可接受的。 但是,很多情况下,需要从多个角度查询数据。例如,在定位某个人的时候,可以通过姓
版权声明:本文为CSDN博主「北京小辉」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/silentwolfyh/article/details/103864901 ———————————————————————————————————
目录 两者的特点 各自的限制 应用场景 ---- 大数据技术Hbase 和 Hive 详解, 今天给大家介绍一下关于零基础学习大数据视频教程之HBASE 和 HIVE 是多么重要的技术,那么两者有什么
两者分别是什么Apache Hive是一个构建在hadoop基础设施之上的数据仓库。通过Hive可以使用HQL语言查询存放在HDFS上的数据。HQL是一种类SQL语言,这种语言最终被转化为Map/Reduce. 虽然Hive提供了SQL查询功能,但是Hive不能够进行交互查询–因为它只能够在Haoop上批量的执行Hadoop。 Apache HBase是一种Key/Value系统,它运行在HDFS之上。和Hive不一样,Hbase的能够在它的数据库上实时运行,而不是运行MapReduce任务。H
我们可以以shell的方式来维护和管理HBase。例如:执行建表语句、执行增删改查操作等等
在前面的学习中, 我们知道 HBase 只能通过 rowkey 进行搜索, 一般把 rowkey 称作一级索引. 在很长的一段时间里 HBase 就只支持一级索引. HBase 里面只有 rowkey 作为一级索引, 如果要对库里的非 rowkey 字段进行数据检索和查询, 往往要通过 MapReduce/Spark 等分布式计算框架进行,硬件资源消耗和时间延迟都会比较高。 为了 HBase 的数据查询更高效、适应更多的场景, 诸如使用非 rowkey 字段检索也能做到秒级响应,或者支持各个字段进行模糊查询和多字段组合查询等, 因此需要在 HBase 上面构建二级索引, 以满足现实中更复杂多样的业务需求。 从 0.94 版本开始, HBase 开始支持二级索引. HBase 索引有多种放方案, 我们今天要做的是使用 Phoenix 给 HBase 添加二级索引.
HBase的一级索引就是rowkey,我们只能通过rowkey进行检索。如果我们相对hbase里面列族的列列进行一些组合查询,就需要采用HBase的二级索引方案来进行多条件的查询。 常见的二级索引方案有以下几种: 1.MapReduce方案 2.ITHBASE方案 3.IHBASE方案 4.Coprocessor方案 5.Solr+hbase方案 MapReduce方案IndexBuilder:利用MR的方式构建Index 优点:并发批量构建Index 缺点:不能实时构建Index ITHBAS
2)无模式:每行都有一个可排序的主键和任意多的列,列可以根据需要动态的增加,同一张表中不同的行可以有截然不同的列;
在之前的章节中我们已经一同学习的Hive和HBase相关的知识,但是Hive和HBase都存在各自的问题,Hive实时性不强单条写入数据慢,HBase查询能力差不具备复杂查询的能力,但是Hive和HBase有个隐藏的功能就是关联操作,既然可以享受到HBase的实时性还可以享受到Hive查询带来的便捷. 附上: 喵了个咪的博客:w-blog.cn 1.前言 **注意:**Hive2.3.0 和 Hbase 关联表 使用 select count(*) form 表名 只会返回0条不会走 MR 程序 可以
Hive中的表是纯逻辑表,就只是表的定义等,即表的元数据。Hive本身不存储数据,它完全依赖HDFS和MapReduce。这样就可以将结构化的数据文件映射为为一张数据库表,并提供完整的SQL查询功能,并将SQL语句最终转换为MapReduce任务进行运行。而HBase表是物理表,适合存放非结构化的数据。
人资绩效系统数据预处理平台,负责接收所有上游业务量数据。具有数据量大、非结构化数据、更新单个业务量数据,查询性能要求高等特性。通常技术上可以选择OSS、MySql数据库、ES等存储方案。其中OSS云存储方案,查询性能与更新单个业务量数据上无法满足。MySql数据库如果每对接一种业务量创建一个表的方式,对于更新查询等方面复杂度较高,不利于系统扩展。而ES存储量与查询量都可以满足,但更新单个字段不够友好,且ES成本较高。
之前学习 HBase 就有疑惑,HBase 虽然可以存储数亿或数十亿行数据,但是对于数据分析来说,不太友好,只提供了简单的基于 Key 值的快速查询能力,没法进行大量的条件查询。
HBase是大数据NoSQL领域里非常重要的分布式KV数据库,是一个高可靠、高性能、高伸缩的分布式存储系统,目前国内知名公司都有在大规模使用,社区也非常活跃。本文就是学习HBase的敲门砖,主要从以下几个方面解读HBase。
Apache Hive是一个构建在Hadoop基础设施之上的数据仓库。通过Hive可以使用HQL语言查询存放在HDFS上的数据。HQL是一种类SQL语言,这种语言最终被转化为Map/Reduce. 虽然Hive提供了SQL查询功能,但是Hive不能够进行交互查询,因为它只能够在Haoop上批量的执行Hadoop。 Apache HBase是一种Key/Value系统,它运行在HDFS之上。和Hive不一样,Hbase的能够在它的数据库上实时运行,而不是运行MapReduce任务。Hive被分区为表格,表格又
小史是一个非科班的程序员,虽然学的是电子专业,但是通过自己的努力成功通过了面试,现在要开始迎接新生活了。
最近群里面讨论HBASE的使用场景,以及是会没落,这个还真是一句话说不清楚。本文讲其中一个场景:详单查询。 背景 某电信项目中采用HBase来存储用户终端明细数据,供前台页面即时查询。HBase无可置疑拥有其优势,但其本身只对rowkey支持毫秒级的快速检索,对于多字段的组合查询却无能为力。针对HBase的多条件查询也有多种方案,但是这些方案要么太复杂,要么效率太低,本文只对基于Solr的HBase多条件查询方案进行测试和验证。 原理 基于Solr的HBase多条件查询原理很简单,将HBase表中涉及条件过
由于hbase基于行健有序存储,在查询时使用行健十分高效,然后想要实现关系型数据库那样可以随意组合的多条件查询、查询总记录数、分页等就比较麻烦了。想要实现这样的功能,我们可以采用两种方法:
(1) Hbase一个分布式的基于列式存储的数据库,基于Hadoop的hdfs存储,zookeeper进行管理。
Hive和HBase是两个在大数据领域中被广泛使用的开源项目,它们各自适用于不同的场景,但也可以在某些情况下结合使用。以下是Hive和HBase在不同场景下的应用示例:
Apache Phoenix主要是基于HBase一款软件, 提供了一种全新(SQL)的方式来操作HBase中数据, 从而降低了使用HBase的门槛, 并且 Phoenix提供了各种优化措施
物流人资数据预处理平台,负责接收一线几十万员工不同条线的工作量,每日数据量约2000w,系统负责加工转换并提供数据查询的同时,还需保证查询性能,以及修改单个业务量功能。本文通过HBase在物流人资数据预处理平台中实践,讲解HBase集群如何协同工作,并概述读取数据以及存储数据的原理,以及使用HBase注意事项。
作者 | 汪婷编辑 | Vincent导语:本文介绍的项目主要解决 check 和 opinion2 张历史数据表(历史数据是指当业务发生过程中的完整中间流程和结果数据)的在线查询。原实现基于 Oracle 提供存储查询服务,随着数据量的不断增加,在写入和读取过程中面临性能问题,且历史数据仅供业务查询参考,并不影响实际流程,从系统结构上来说,放在业务链条上游比较重。该项目将其置于下游数据处理 Hadoop 分布式平台来实现此需求。 背景介绍 本项目主要解决 check 和 opinion2 张历史数据表
总结: HADOOP仅适合存储大批量的数据, 进行顺序化读取数据, 并不支持随机读取数据操作
场景描述:先放结论:Hbase和Hive在大数据架构中处在不同位置,Hbase主要解决实时数据查询问题,Hive主要解决数据处理和计算问题,一般是配合使用。
最近,在用Flink SQL批量写HBase,做调度。主要遇到了三个大坑,在接下来的三篇文章中逐个记录。三个大坑分别是,
一 Hbase是个啥东东? 在说Hase是个啥家伙之前,首先我们来看看两个概念。面向行存储和面向列存储。面向行存储。我相信大伙儿应该都清楚,我们熟悉的RDBMS就是此种类型的。面向行存储的数据库主要适合于事务性要求严格场合,或者说面向行存储的存储系统适合OLTP。可是依据CAP理论,传统的RDBMS。为了实现强一致性,通过严格的ACID事务来进行同步,这就造成了系统的可用性和伸缩性方面大大折扣。而眼下的非常多NoSQL产品,包含Hbase,它们都是一种终于一致性的系统,它们为了高的可用性牺牲了一部分的一致性。好像。我上面说了面向列存储,那么究竟什么是面向列存储呢?Hbase,Casandra,Bigtable都属于面向列存储的分布式存储系统。 看到这里,假设您不明确Hbase是个啥东东,不要紧,我再总结一下下: Hbase是一个面向列存储的分布式存储系统。它的长处在于能够实现高性能的并发读写操作,同一时候Hbase还会对数据进行透明的切分,这样就使得存储本身具有了水平伸缩性。 二 Hbase数据模型 HBase,Cassandra的数据模型很类似。他们的思想都是来源于Google的Bigtable,因此这三者的数据模型很类似,唯一不同的就是Cassandra具有Super cloumn family的概念,而Hbase眼下我没发现。好了。废话少说。我们来看看Hbase的数据模型究竟是个啥东东。 在Hbase里面有以下两个基本的概念,Row key,Column Family。我们首先来看看Column family,Column family中文又名“列族”,Column family是在系统启动之前预先定义好的,每个Column Family都能够依据“限定符”有多个column.以下我们来举个样例就会很的清晰了。 假如系统中有一个User表。假设依照传统的RDBMS的话。User表中的列是固定的,比方schema 定义了name,age,sex等属性。User的属性是不能动态添加的。可是假设採用列存储系统。比方Hbase。那么我们能够定义User表,然后定义info 列族。User的数据能够分为:info:name = zhangsan,info:age=30,info:sex=male等。假设后来你又想添加另外的属性。这样非常方便仅仅须要info:newProperty就能够了。 或许前面的这个样例还不够清晰,我们再举个样例来解释一下。熟悉SNS的朋友,应该都知道有好友Feed,一般设计Feed,我们都是依照“某人在某时做了标题为某某的事情”,可是同一时候一般我们也会预留一下keyword,比方有时候feed或许须要url,feed须要image属性等,这样来说。feed本身的属性是不确定的。因此假设採用传统的关系数据库将很麻烦。况且关系数据库会造成一些为null的单元浪费,而列存储就不会出现这个问题。在Hbase里,假设每个column 单元没有值,那么是占用空间的。
Hbase理论知识点概要 问题01:Hbase的功能与应用场景? 功能:Hbase是一个分布式的、基于分布式内存和HDFS的按列存储的、NoSQL数据库 应用:Hbase适合于需要实时的对大量数据进行快速、随机读写访问的场景 问题02:Hbase有什么特点? 分布式的,可以实现高并发的数据读写 上层构建分布式内存,可以实现高性能、随机、实时的读写 底层基于HDFS,可以实现大数据 按列存储,基于列实现数据存储,灵活性更高 问题03:Hbase设计思想是什么? 设计思想
NoSQL(Not only SQL)数据库,可以理解为区别于关系型数据库如mysql、oracle等的非关系型数据库。聊到NoSQL不得不提著名的CAP理论,全称 Consistency Available and Partition tolerance,即一致性、可用性与分区容错性,这是Eric Brewer教授提出的分布式系统设计理念,并给出了定论:任何分布式系统只能同时满足其中二点,无法做到三者兼顾。这可以说是NoSQL数据库的理论基石,至今NoSQL领域也称得上是百花齐放了,一直也没有哪一款NoSQL同时兼顾着这三点特性。
我们可以以shell的方式来维护和管理HBase。例如:执行建表语句、执行增删改查操作等等。 4.1 需求 有以下订单数据,我们想要将这样的一些数据保存到HBase中。 订单ID 订单状态 支付金额 支付方式ID 用户ID 操作时间 商品分类 001 已付款 200.5 1 001 2020-5-2 18:08:53 手机; 接下来,我们将使用HBase shell来进行以下操作: 1.创建表 2.添加数据 3.更新数据 4.删除数据 5.查询数据 4.2 创建表 在HBase中,所有的数据也都是保存在表中的。要将订单数据保存到HBase中,首先需要将表创建出来。 4.2.1 启动HBase Shell HBase的shell其实JRuby的IRB(交互式的Ruby),但在其中添加了一些HBase的命令。 启动HBase shell: hbase shell 4.2.2 创建表
hbase是建立的hdfs之上,提供高可靠性、高性能、列存储、可伸缩、实时读写的数据库系统。
上一篇文章已经为大家介绍了 MySQL 在用户画像的标签数据存储中的具体应用场景,本篇我们来谈谈 HBase 的使用!
hbase是基于hdfs进行数据的分布式存储,具有高可靠、高性能、列存储、可伸缩、实时读写的nosql数据库。
一种操作hadoop的轻量级脚本语言,最初又雅虎公司推出,不过现在正在走下坡路了。当初雅虎自己慢慢退出pig的维护之后将它开源贡献到开源社区由所有爱好者来维护。不过现在还是有些公司在用,不过我认为与其使用pig不如使用hive。:)
HBase 深入浅出 HBase 在大数据生态圈中的位置 提到大数据的存储,大多数人首先联想到的是 Hadoop 和 Hadoop 中的 HDFS 模块。大家熟知的 Spark、以及 Hadoop 的 MapReduce,可以理解为一种计算框架。而 HDFS,我们可以认为是为计算框架服务的存储层。因此不管是 Spark 还是 MapReduce,都需要使用 HDFS 作为默认的持久化存储层。那么 HBase 又是什么,可以用在哪里,解决什么样的问题?简单地,我们可以认为 HBase 是一种类似于数据库的存储
本文主要介绍HBase在滴滴内部的一些典型使用场景,如何设计整个业务数据流,让平台开发者与用户建立清晰、明确、良好的合作关系 背景 对接业务类型 HBase是建立在Hadoop生态之上的Database,源生对离线任务支持友好,又因为LSM树是一个优秀的高吞吐数据库结构,所以同时也对接了很多线上业务。在线业务对访问延迟敏感,并且访问趋向于随机,如订单、客服轨迹查询。离线业务通常是数仓的定时大批量处理任务,对一段时间内的数据进行处理并产出结果,对任务完成的时间要求不是非常敏感,并且处理逻辑复杂,如天级别报表、
◆ 冷热分离二期实现思路:冷数据存放到HBase ◆ 冷热分离一期解决方案的不足 不得不说,冷热分离一期的解决方案确实能解决写操作慢和热数据慢的问题,但仍然存在诸多不足。 1)用户查询冷数据的速度依旧很慢,虽然查询冷数据的用户比例很低。 2)冷数据库偶尔会告警。 这两点不足体现在用户侧是什么样呢?那就是一旦客服在工单查询表中勾选“查询归档”checkBox,页面就会一直转圈,而后台冷数据库的IO就会飙升。 如果客服发现页面没反应,可能会多点几次“查询”按钮,那么有可能把后台服务器的请求线程占满,导致整个系统
进入hbase shell console $HBASE_HOME/bin/hbase shell 如果有kerberos认证,需要事先使用相应的keytab进行一下认证(使用kinit命令),认证成功之后再使用hbase shell进入可以使用whoami命令可查看当前用户 hbase(main)> whoami 表的管理 1)查看有哪些表 hbase(main)> list
本文结合两个实战场景就基于 HBase 的大数据存储做了简单的分析,并对 HBase 的原理做了简单的阐述。
一、hbase应用场景 海量数据存储,上百亿行×上百万列,关系型数据库一般最多30个列,单表五百万 准实时查询,上百亿行×上百万列情况百毫秒 上百万行数据没必要放在hbase 举例说明实际业务场景中的应用:交通GPS信息、移动电话信息、金融、电商 二、hbase的特点 容量大:hbase单表可以百亿行、百万列,数据矩阵横向和纵向亮给维度所支持的数据两级都非常具有弹性; 面向列:hbase是面向列的存储和权限控制,并支持独立检索。列式存储,其数据在表中是按照某列存储的,这样在查询只需要少数几个字段的时候,能大
Hbase 中的每张表都通过行键 (rowkey) 按照一定的范围被分割成多个子表(HRegion),默认一个 HRegion 超过 256M 就要被分割成两个,由 HRegionServer 管理,管理哪些 HRegion 由 Hmaster 分配。 HRegion 存取一个子表时,会创建一个 HRegion 对象,然后对表的每个列族 (Column Family) 创建一个 store 实例, 每个 store 都会有 0个或多个 StoreFile 与之对应,每个 StoreFile 都会对应一个 HFile , HFile 就是实际的存储文件,因此,一个 HRegion 还拥有一个 MemStore 实例。
背景 对接业务类型 HBase是建立在Hadoop生态之上的Database,源生对离线任务支持友好,又因为LSM树是一个优秀的高吞吐数据库结构,所以同时也对接了很多线上业务。在线业务对访问延迟敏感,并且访问趋向于随机,如订单、客服轨迹查询。离线业务通常是数仓的定时大批量处理任务,对一段时间内的数据进行处理并产出结果,对任务完成的时间要求不是非常敏感,并且处理逻辑复杂,如天级别报表、安全和用户行为分析、模型训练等。 多语言支持 HBase提供了多语言解决方案,并且由于滴滴各业务线RD所使用的开发语言各有偏好
Apache Hive是一个构建于Hadoop(分布式系统基础架构)顶层的数据仓库,注意这里不是数据库。Hive可以看作是用户编程接口,它本身不存储和计算数据;它依赖于HDFS(Hadoop分布式文件系统)和MapReduce(一种编程模型,映射与化简;用于大数据并行运算)。其对HDFS的操作类似于SQL—名为HQL,它提供了丰富的SQL查询方式来分析存储在HDFS中的数据;HQL经过编译转为MapReduce作业后通过自己的SQL 去查询分析需要的内容;这样一来,即使不熟悉MapReduce 的用户也可以很方便地利用SQL 语言查询、汇总、分析数据。而MapReduce开发人员可以把己写的mapper 和reducer 作为插件来支持Hive 做更复杂的数据分析。
(2)、无模式:每行都有一个可排序的主键和任意多的列,列可以根据需要动态增加,同一个表中的不同行的可以有截然不同的列。
领取专属 10元无门槛券
手把手带您无忧上云