机器之心报道 机器之心编辑部 人类玩家游戏还没玩通,AI 已经能造个游戏了。 侠盗猎车手 5(GTA5)是一款经典的动作冒险游戏,深受玩家欢迎,多个研究团队曾为它推出补丁,以使其具有更加逼真的游戏质感。 在第三方不断为 GTA5 推出补丁的同时,许多玩家高呼:「GTA6 什么时候能出啊」。我们无法揣摩 R 星的思路,GTA6 目前尚未发布,不过有一款 AI 独立开发的「GTA5」,你可以试试。 它的名字叫做「GAN Theft Auto」,和真正的 Grand Theft Auto 略有差别。 玩家们在玩
大数据文摘出品 作者:Caleb 前一阵子,全球玩家都在担心,难道苦苦等了8年的GTA6,又要延期了吗? 大概一周前,GTA6突然被放出了大规模内容,共计90多个视频,上万行源码。这也可以说是电子游戏史上最大的一次泄密事件了。 此前,这位泄露了GTA6内容的黑客在GTAForums更新了帖子,不仅直接放出自己的邮箱、Telegram,还向开发商Rockstar Games(R星)喊话,表示“期望达成一个交易”。 9月19日,R星也终于发布公告,承认了泄露内容的真实性,并指出此次泄露是由三方力量非法进入了内
神经网络负责处理画面中的一切信息,包括远处的风景,你每按下一次键控制车左转或右转、车撞到边栏等操作。
更有意思的是,据英特尔表示,这个补丁在Geforce RTX 3090 GPU上,完成一次画质增强推理,只需要半秒钟的时间。
相信在面试中,只要问到Spring,基本都会抛出一个问题,说说你对Spring IOC理解吧?虽然在日常的开发经常会使用到,但是要回答起来,并不简单。大脑经过简单的头脑风暴后,蹦出了控制反转、依赖注入这样的词语。显然这些并不是面试官想听的。
GTA5是一款自由度极高的开放性游戏,该游戏支持自定模型组件,从而让其更加灵活能够定制出一些具有独有特性的动画,甚至可以拍摄简单的电影,在模型替换上有多种替换形式,一种是新增,另一种是直接替换原有的NPC路人等,这里我研究了一段时间终于搞明白了,GTA5中每个游戏组件的具体功能,从而能够将轻易的实现模型的替换,与新增等,另外GTA5还支持外部脚本扩展,你可以自己编写一些外部功能性脚本,灵活强极高。
原文名称:Reading game frames in Python with OpenCV - Python Plays GTA V 原文链接:https://pythonprogramming.net/game-frames-open-cv-python-plays-gta-v/ 原文作者:@Harrison 本文是Harrison《Python Plays GTA V》系列教程第一篇。 当OpenAI's Universe(Universe)出现后,很多文章都在鼓吹大量的游戏(甚至GTA5)已经做
由于为语义分割注释像素级标签非常费力,因此利用合成数据是一个很有吸引力的解决方案。然而,由于合成域与真实域之间存在域间的差异,用合成数据训练的模型很难推广到真实数据中去。在本文中,我们考虑到两个域之间的根本区别作为纹理,提出了一种适应目标域纹理的方法。首先,我们利用风格转换算法对合成图像的纹理进行多样性处理。生成图像的各种纹理防止分割模型过度拟合到一个特定的(合成)纹理。然后通过自训练对模型进行微调,得到对目标纹理的直接监督。我们的结果达到了最先进的性能,我们通过大量的实验分析了在程式化数据集上训练的模型的属性。
DeepMind在13年发了一篇paper,叫做”Playing Atari with Deep Reinforcement Learning”,讲的是怎么教计算机玩atari游戏
2020年7月24日的时候,R⭐发了条公告,大概意思就是说GTA在线模式大表哥2在线模式要更新了,大表哥首当其冲,GTA紧跟其后。
如图,本周Epic商城免费送GTA5,而且是一经入库永久拥有,并不是限免几天,而且还是豪华版,自带新手包。直到5月21号前都可以免费领。
近日,专注于三维传感组件的安思疆科技获得近1亿人民币A轮投资,本轮融资由北京清控金信资本领投,力合科创基金、炼金术资本、杭州复林创投基金跟投。据悉,安思疆所获资金将主要用于扩大产能与研发投入。此外,算上曾获力合科创基金的2千万人民币天使投资,目前安思疆估值将达3亿人民币左右。
是重新搭一个模型呢,还是拿来新数据重新调参,在这个已经训练好的模型上搞迁移学习呢?
话不多说,上资源: 链接:https://pan.baidu.com/s/1oWE6L0J1s33R_2zfcxiG_A 提取码:b9tf 解压后,先启动GTA5,进入游戏菜单界面 然后打开Xenos(32位)或者Xenos64(64位) 将文件夹下的GTAO_Booster.dll拖动进列表框内
对语义分割来讲基于卷积神经网络的方法,依赖像素级ground-truth标记,但是对未知领域可能泛化效果并不好。因为标记过程是沉闷和耗时的,开发将源ground truth标记到目标域引起了很大的关注。本文我们提出一种对抗训练方法在语义分割的内容中进行域适配。考虑语义分割作为结构输出包含源域和目标域的空间相似性,在输出空间中,我们采用对抗训练。为了进一步增强适配模型,我们构建一个多层对抗网络,在不同特征级别上有效的执行输出空间域适配。一系列的实验和消融研究在不同域适配下进行,包括合成到真实和跨城市场景。我们表明提出的方法在精度是视觉质量方面,超过了现有的最先进的方法。
领域适应对于在新的、看不见的环境中取得成功至关重要。对抗性适应模型通过专注于发现域不变表示或通过在未配对的图像域之间进行映射,在适应新环境方面取得了巨大进展。虽然特征空间方法很难解释,有时无法捕捉像素级和低级别的域偏移,但图像空间方法有时无法结合与最终任务相关的高级语义知识。我们提出了一种使用生成图像空间对齐和潜在表示空间对齐来适应域之间的模型。我们的方法,循环一致的对抗性领域适应(CyCADA),根据特定的有区别的训练任务指导领域之间的转移,并通过在适应前后加强相关语义的一致性来避免分歧。我们在各种视觉识别和预测设置上评估了我们的方法,包括道路场景的数字分类和语义分割,提高了从合成驾驶领域到现实驾驶领域的无监督自适应的最先进性能。
无监督域自适应(UDA)可以解决基于卷积神经网络(CNN)的语义分割方法严重依赖于像素级注释数据的挑战,这是劳动密集型的。然而,这方面现有的UDA方法不可避免地需要完全访问源数据集,以减少模型自适应过程中源域和目标域之间的差距,这在源数据集是私有的真实场景中是不切实际的,因此无法与训练有素的源模型一起发布。为了解决这个问题,我们提出了一种用于语义分割的无源领域自适应框架,即SFDA,其中只有经过训练的源模型和未标记的目标领域数据集可用于自适应。SFDA不仅能够在模型自适应过程中通过知识转移从源模型中恢复和保存源领域知识,而且能够从目标领域中提取有价值的信息用于自监督学习。为语义分割量身定制的像素级和补丁级优化目标在框架中无缝集成。在众多基准数据集上的广泛实验结果突出了我们的框架相对于依赖源数据的现有UDA方法的有效性。
本文来自于ECCV2018的论文《Adaptive Affinity Fields for Semantic Segmentation》,UC伯克利大学的研究人员提出了一种自适应相似场(Adaptive Affinity Fields )来辅助语义分割的方法,增强了网络对目标结构推理的能力,取得了非常显著的性能提升,代码已开源。 作者信息:
基于深度学习的语义分割方法有一个内在的局限性,即训练模型需要大量具有像素级标注的数据。为了解决这一具有挑战性的问题,许多研究人员将注意力集中在无监督的领域自适应语义分割上。无监督域自适应试图使在源域上训练的模型适应目标域。在本文中,我们介绍了一种自组装技术,这是分类中领域自适应的成功方法之一。然而,将自组装应用于语义分割是非常困难的,因为自组装中使用的经过大量调整的手动数据增强对于减少语义分割中的大的领域差距没有用处。为了克服这一限制,我们提出了一个由两个相互补充的组件组成的新框架。首先,我们提出了一种基于生成对抗性网络(GANs)的数据扩充方法,该方法在计算上高效,有助于领域对齐。给定这些增强图像,我们应用自组装来提高分割网络在目标域上的性能。所提出的方法在无监督领域自适应基准上优于最先进的语义分割方法。
IBN-Net出发点是:提升模型对图像外观变化的适应性。在训练数据和测试数据有较大的外观差异的时候,模型的性能会显著下降,这就是不同域之间的gap。比如训练数据中的目标光线强烈,测试数据中的目标光线昏暗,这样一般效果都不是很好。
预测语义分割等结构化输出依赖于昂贵的每像素注释来学习卷积神经网络等监督模型。然而,在没有模型调整注释的情况下,在一个数据域上训练的模型可能无法很好地推广到其他域。为了避免注释的劳动密集型过程,我们开发了一种域自适应方法,将源数据自适应到未标记的目标域。我们建议通过构建聚类空间来发现逐片输出分布的多种模式,从而学习源域中补丁的判别特征表示。以这种表示为指导,我们使用对抗性学习方案来推动聚类空间中目标补丁的特征表示更接近源补丁的分布。此外,我们还表明,我们的框架是对现有领域自适应技术的补充,并在语义分割方面实现了一致的改进。广泛的消融和结果在各种设置的众多基准数据集上进行了演示,例如合成到真实和跨城市场景。
(VRPinea 5月11日电)今日重点新闻:苹果沉浸式VR技术获专利,将应用于自动驾驶汽车;联想ThinkReality A6 AR眼镜新增手势跟踪和识别功能;索尼申请自动驾驶AR/VR专利,提供沉浸式驾乘娱乐体验
目前很多企业都开始使用云端堡垒机来管理企业内部的IT设备,但有时候会无缘无故发生服务器无法连接的情况,很多网络管理员在面对这样的问题时往往束手无策。那么网神堡垒机无法远程到服务器原因是什么?解决这类问题的方法有哪些呢?
AI 科技评论按:生成式对抗性网络 GANs 是近几年最热门的机器学习范式之一,它“图像生成效果好”和“训练困难、效果不稳定”的特点吸引了许许多多研究者付出精力进行 GANs 的研究。虽然它在大尺寸图像和图像逼真程度方面的表现仍然有限,但仍然是目前最好的图像生成范式。 所以当看到如此逼真的高分辨率生成图像的时候,我们几乎要以为这是 GANs 的新突破。虽然图中还有一些扭曲和不自然,但是细节和物体的结构已经比较完善。然而定睛一看,这样的效果居然是一个单向的端到端网络完成的! 介绍这项成果的论
论文地址: http://arxiv.org/pdf/2110.11662v1.pdf
机器之心报道 编辑:小舟、泽南 英特尔在侠盗猎车手 5(GTA5)上测试了他们的图像增强新模型,该模型给出了令人印象深刻的结果。 GTA5 是一款经典的 3D 冒险游戏,它的画风是这样的: 画面接近真实,但少了一些质感...... 近日,来自英特尔的研究者给 GTA 做了一个画质增强补丁,先来看下效果: 左为 GTA 中的 3D 渲染图,右为英特尔新模型生成结果。 效果很不错,下面这一张画质增强的效果就更明显了,该模型处理后的画面宛如相机实拍: 在 3D 渲染领域,实时和真实感是两个关键要素。通常
《侠盗猎车手5》(Grand Theft Auto V)又名“给他爱5”,是由Rockstar Games游戏公司出版发行的一款围绕犯罪为主题的开放式动作冒险游戏。本作于2013年9月17日登陆Play Station 3、Xbox 360平台,2014年11月18日登陆Play Station 4和Xbox ONE平台。多人模式《侠盗猎车手Online》于2013年10月1日正式开放。PC版本已于2015年4月14日推出
基于深度学习的语义分割方法效果出众,但需要大量的人工标注进行监督训练。不同于图像分类等任务,语义分割需要像素级别的人工标注,费时费力,无法大规模实施。借助于计算机虚拟图像技术,如3D游戏,用户可以几乎无成本地获得无限量自动标注数据。然而虚拟图像和现实图像间存在严重的视觉差异(域偏移),如纹理、光照、视角差异等等,这些差异导致在虚拟图像上训练出的深度模型往往在真实图像数据集上的分割精度很低。
Learning to Adapt Structured Output Space for Semantic Segmentation
有一点很重要:代码在编译前就只是文字而已。前面提过,你可以用记事本或任何文字处理器,有人确实这样做。但一般来说,现代软件开发者 会用专门的工具来写代码,工具里集成了很多有用功能帮助写代码,整理,编译和测代码。因为集成了所有东西,因此叫 集成开发环境,简称 IDE。
1.布局 游戏旅行音乐 GTA5、孤岛惊魂 澳大利亚、西藏 暗里着迷、一生有你 </di03
游戏旅行音乐
梦晨 衡宇 发自 凹非寺 量子位 | 公众号 QbitAI 全球游戏玩家盼了八年的GTA6,恐怕又要延期了。 黑客一次性放出90段游戏泄露视频,已在各大平台疯传,官方删都删不过来。 这件事的影响力不只在游戏圈,也受到大量主流媒体、商业媒体关注—— 涉及的游戏开发商Rockstar Games(简称R星),其母公司Take-Two Interactive是一家市值200亿美元的上市公司。 系列前作GTA5最早于2013年推出,截至2021年底累计销量超1.6个亿风靡全球,并靠出售线上道具的模式持续盈利,狂赚
无监督域适配在各种计算机视觉任务重很关键,比如目标检测、实例分割和语义分割。目的是缓解由于域漂移导致的性能下降问题。大多数之前的方法采用对抗学习依赖源域和目标域之间的单模式分布,导致在多种场景中的结果并不理想。为此,在本文中,我们设计了一个新的空口岸注意力金字塔网络来进行无监督域适配。特别的,我们首先构建了空间金字塔表示来获得目标在不同尺度的内容信息。以任务指定的信息为引导,在每个尺度上,我们组合了密集的全局结构表示和局部纹理模式,有效的使用了空间注意力截止。采用这种方式,网络被强迫关注内容信息由区别力的地方来进行域适配。我们在各种由挑战性的数据集上进行了昂贵的实验,对目标检测、实例分割和语义分割进行了域适配,这证明了我们的方法比最佳的方法有了很大的提升。
将某客户的域控、文件服务器和桌面全部迁移到公有云已经有一段时间了,工作效率提高了很多,尤其是疫情期间,云桌面真的为远程办公提供了诸多便利。
EasyNVS是我们推出的可以对EasyNVR进行统一管理、解决网络各种限制的云管理平台,它可以在外网条件下获取内网EasyNVR的所有视频能力。当有多个现场、有多个EasyNVR时,EasyNVS可以实现对EasyNVR设备实现集中接入、统一运维管理。
据报道,日前大型国际航空公司国泰航空披露,在今年3月发生的一次数据泄露事件中,该公司的940万名乘客的记录被盗,含有姓名、出生日期、住址等个人信息的护照信息也可能已经泄露。据悉,此次事件还涉及到了每位乘客的具体出行地点以及客户服务代表的评论等。国泰航空还指出,有403个过期信用卡卡号、27个没有CVV号码的信用卡卡号遭到访问。认为自己可能受到影响的客户可以访问infosecurity.cathaypacific.com 或直接拨打公司电话或发电子邮件获取进一步的信息。
随着中国互联网行业的欣欣向荣,软件推广可以带来巨大的利益,使得原本处在“黑产”中的“病毒制造者”纷纷变成软件推广渠道商,利用病毒技术和不法手段在互联网市场中大肆“吸金”。许多知名商业软件(包括某些安全软件)在明明知情的情况下,却利用病毒或黑产组织推广自家产品,并按照推广效果向病毒制造者支付大量费用,这是病毒组织疯狂作恶的最大动力。可以说,是知名软件公司们“喂养”着众多病毒制造者。
在机器学习、深度学习和数据挖掘的大多数任务中,我们都会假设training和inference时,采用的数据服从相同的分布(distribution)、来源于相同的特征空间(feature space)。但在现实应用中,这个假设很难成立,往往遇到一些问题:
即将翻过的这个世代,是大作的时代,涌现了一大批的大作,譬如《荒野大镖客2》、《GTA5》、《巫师3》等游戏。
(VRPinea 6月12日讯)千呼万唤始出来,经过一次又一次的日期变动,激动人心的PlayStation 5(以下均简称PS5)主机终于在今日(6月12日)凌晨4点发布了。本次发布会以1080P画质的视频形式在线发布,在长达1个多小时的视频中,官方介绍了将在PS5发布的几十款游戏大作、PS5的整体造型设计以及一系列全新的周边设备。
(VRPinea 7月12日讯)今日重点新闻:Google Meet新增AR卡通滤镜,可以在iOS和安卓的移动应用中使用;VR动画《Paper Birds》第二部已在 Quest 上独家发售,并兼容Quest手势追踪功能;VR冒险游戏《Obduction》将于7月15日免费上架Epic Games,支持Steam VR。
现代操作系统都采用的是逻辑地址,即我们在程序中定义的地址都是逻辑上的并不是真正的物理地址,原因是因为在多道程序中是不能确定到程序运行后的物理地址的,有可能被其他程序占用,有可能会动态的改变其地址,例如物理地址在02位置,当01位置的数据变大后导致数据02的空间需要被占用,此时物理地址会发生变化。逻辑地址可以让每个进程自己的地址都是连续的即在逻辑上是连续的。
尽管基于深度学习的方法在语义分割方面取得了显著的成就,但这些方法常常需要大量的逐像素标注数据。
作为 R 星旗下最知名的游戏系列之一,GTA 一直以来都备受游戏玩家的喜爱和期待:
现在很多年轻人和中年人都十分喜欢网络游戏,在平时玩网络游戏可以起到放松心情的作用。所以游戏行业也发展的较为迅速,除了可以在电脑手机上玩游戏以外,还可以在云游戏平台上玩游戏。如果遇到云游戏无法连接服务器的情况应该怎么办呢?下面为大家介绍云游戏无法连接服务器是什么原因,云游戏无法连接服务器怎么办?
高通公司人工智能研究人员表示,该公司正在研制用于智能终端的语音识别系统,通过综合采用循环神经网络和卷积神经网络,该系统语音识别准确率可达95%。
EasyCVR是我们支持协议最全面的视频平台,它能支持主流协议包括国标GB/T28181、RTMP、RTSP/Onvif协议,以及厂家的私有协议,如海康Ehome、海康SDK、大华SDK等。平台可提供视频监控直播、云端录像、云存储、录像检索与回看、智能告警、平台级联、智能分析等视频服务,在线下场景中有着广泛的应用,如智慧工地、智慧校园、智慧社区、智慧楼宇等。
通过带标签的source domain的图片和标签训练得到一个网络模型,利用target image 进行domain adaptation 操作,使得source domain训练的网络模型也能够应用在target image上。
在波士顿的Re-Work深度学习峰会上,高通公司的人工智能研究员Chris Lott介绍了他的团队在新的语音识别程序方面的工作。
领取专属 10元无门槛券
手把手带您无忧上云