首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

深度神经网络移动终端GPU加速实践

实现AI有很多种途径方法,这其中深度学习神经网络被认为是最有可能实现AI的途径。...作为工程人出身的我们,更是迫切需要主动去迎接AI时代的到来,带着智能图像识别的需求,我们尝试去工程化深度神经网络并最终落地,当中的一些实践经验通过本文记录下来。...MobileNet模型 MobileNet是谷歌为移动终端设备专门设计的高效深度神经网络模型,整个模型的参数量以及运算量都控制的比较小,并且在图像分类和物体检测等任务上均有着非常不错的效果。...因此,每段GPU代码同时有多个线程在访问,这种并行的工作形式非常适合神经网络的运行。...实践成果 整个实践过程下来,对于如何选择并训练模型,处理数据,以及在终端移动设备上工程化落地深度神经网络并做GPU加速,我们有了丰富的认识和理解,对于这类AI项目有了更多的技术储备,对于AI本身也有了更为深刻的感悟

1.9K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用腾讯云 GPU 学习深度学习系列之三:搭建深度神经网络

    这是《使用腾讯云GPU学习深度学习》系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网络模块...本系列文章主要介绍如何使用 腾讯云GPU服务器 进行深度学习运算,前面主要介绍原理部分,后期则以实践为主。...我们可以简单的将深度神经网络的模块,分成以下的三个部分,即深度神经网络上游的基于生成器的 输入模块,深度神经网络本身,以及深度神经网络下游基于批量梯度下降算法的 凸优化模块: 批量输入模块 各种深度学习零件搭建的深度神经网络...深度神经网络的上下游结构 介绍完深度神经网络的基本结构以后,读者可能已经意识到了,1.3.3 部分提到的深度神经网络的参数大小动辄几十M、上百M,如何合理训练这些参数是个大问题。...(详见下文 凸优化模块) 使用 GPU 等计算卡代替 CPU,加速并行计算速度。 这就有点《愚公移山》的意思了。我们可以把训练深度神经网络的训练任务,想象成是搬走一座大山。

    6.1K41

    深度学习“引擎”之争:GPU加速还是专属神经网络芯片?

    4款新方案 NVIDIA回顾了GTC上推出的四项有助于推动深度学习发展的新产品和方案: 1、GeForce GTX TITAN X,为训练深度神经网络而开发的GPU。...DIGITS DevBox采用四个 TITAN X GPU,从内存到 I/O的每个组件都进行了最佳化调试,预先安装了开发深度神经网络所需要使用到的各种软件,包括:DIGITS 软件包,三大流行深度学习架构...另外一个是DIGITS,用于设计、训练和验证图像分类深度神经网络的多合一图形系统。...DIGITS 可在安装、配置和训练深度神经网络过程中为用户提供指导,具有便于从本地和网络加载训练数据集的用户界面和工作流程管理能力,并提供实时监控和可视化功能,目前支持 GPU 加速版本 Caffe,详见...例如,科大讯飞为打造“讯飞超脑”,除了GPU,还考虑借助深度定制的人工神经网络专属芯片来打造更大规模的超算平台集群。 不过,在二者尚未产品化的今天,NVIDIA并不担忧GPU会在深度学习领域失宠。

    1.3K40

    独家 | 教你使用Keras on Google Colab(免费GPU)微调深度神经网络

    简介 在CPU上训练深度神经网络很困难。本教程将指导您如何使用Google Colaboratory上的Keras微调VGG-16网络,这是一个免费的GPU云平台。...然后选择您的运行时间类型,从硬件加速器下拉菜单中选择GPU并保存您的设置,如下图所示: ? 3. 将您的自定义数据集上传到Colab 您已将笔记本设置为在GPU上运行。...让我们继续第4节,使用这个数据集构建一个简单的神经网络。 4. 微调您的神经网络 将数据集下载到Colab后,现在让我们在前景分割域中对Keras预训练模型进行微调。请按照以下步骤操作: 步骤a....使用GPU进行训练 一次迭代大约需要1秒钟,贼快!验证集的最大精度高于98%。还不错,对吧?现在,让我们暂停一下。让我们比较使用和不使用GPU的训练速度(如果需要,可以跳过此比较并跳转到测试部分)。...要在没有GPU的情况下进行训练,请将硬件加速器设置为无(参见上面的第2节)。这是培训日志。没有GPU,一次迭代需要大约30秒,而使用GPU训练只需要1秒(大约快30倍?)。 ?

    3.4K10

    深度学习的GPU深度学习中使用GPU的经验和建议

    深度学习是一个计算需求强烈的领域,您的GPU的选择将从根本上决定您的深度学习体验。在没有GPU的情况下,这可能看起来像是等待实验结束的几个月,或者运行一天或更长时间的实验,只是看到所选参数已关闭。...在比赛中,我使用了一个相当大的两层深度神经网络,整数线性单位和正则化退出,这个深度网络几乎适合我的6GB GPU内存。 我应该得到多个GPU?...我很快发现,要在多个GPU上高效地并行化神经网络不仅非常困难,而且对于稠密神经网络来说,加速只是平庸的。...小型神经网络可以使用数据并行性相当高效地进行并行化处理,但是像Partly Sunny中使用的大型神经网络几乎没有任何加速。...总体而言,可以说一个GPU几乎适用于任何任务,但是多个GPU对于加速您的深度学习模型变得越来越重要。如果您想快速学习深度学习,多款便宜的GPU也非常出色。

    2.8K110

    深度学习如何挑选GPU

    深度学习是一个对计算有着大量需求的领域,从一定程度上来说,GPU的选择将从根本上决定深度学习的体验。因此,选择购买合适的GPU是一项非常重要的决策。那么2022年,如何选择合适的GPU呢?...以下是针对不同深度学习架构的一些优先准则: Convolutional networks and Transformers: Tensor Cores > FLOPs > Memory Bandwidth...Bandwidth > 16-bit capability > Tensor Cores > FLOPs 2 如何选择NVIDIA/AMD/Google NVIDIA的标准库使在CUDA中建立第一个深度学习库变得非常容易...由于TPU具有复杂的并行基础结构,因此如果使用多个云TPU(相当于4个GPU),TPU将比GPU具有更大的速度优势。因此,就目前来看,TPU更适合用于训练卷积神经网络。...RTX 2070或2080(8 GB):适合深度学习专业研究者,且预算为4-6k RTX 2080 Ti(11 GB):适合深度学习专业研究者,而您的GPU预算约为8-9k。

    2.5K30

    深度学习如何挑选GPU

    深度学习是一个对计算有着大量需求的领域,从一定程度上来说,GPU的选择将从根本上决定深度学习的体验。因此,选择购买合适的GPU是一项非常重要的决策。那么2022年,如何选择合适的GPU呢?...以下是针对不同深度学习架构的一些优先准则: Convolutional networks and Transformers: Tensor Cores > FLOPs > Memory Bandwidth...Bandwidth > 16-bit capability > Tensor Cores > FLOPs 2 如何选择NVIDIA/AMD/Google NVIDIA的标准库使在CUDA中建立第一个深度学习库变得非常容易...由于TPU具有复杂的并行基础结构,因此如果使用多个云TPU(相当于4个GPU),TPU将比GPU具有更大的速度优势。因此,就目前来看,TPU更适合用于训练卷积神经网络。...RTX 2070或2080(8 GB):适合深度学习专业研究者,且预算为4-6k RTX 2080 Ti(11 GB):适合深度学习专业研究者,而您的GPU预算约为8-9k。

    2K30

    深度学习:FPGA VS GPU

    导语:FPGA 在加速下一代深度学习方面能击败GPU吗?...在诸多机器学习算法中,深度卷积神经网络(DNN)为重要的图像分类任务提供了最高的准确度,因而得到了广泛采用。...英特尔可编程解决方案部门的FPGA 架构师兰迪·黄(Randy Huang)博士是这篇论文的合著者之一,他说:“深度学习是人工智能方面最激动人心的领域,因为我们已经看到深度学习带来了最大的进步和最广泛的应用...深度神经网络概况 神经网络计算会通过网络中的每个层。就某个特定的层而言,每个神经元的值通过相乘和累加上一层的神经元值和边权重来计算。计算高度依赖相乘-累加操作。...FPGA在深层神经网络中的未来 FPGA能否在下一代 DNN的性能上击败GPU

    1.9K80

    深度剖析:针对深度学习的GPU共享

    本文详细论述了深度学习GPU的资源隔离与并行模式,并提出了对于深度学习与GPU的展望。...A survey of GPU sharing for DL 当前机器学习训练中,使用GPU提供算力已经非常普遍,对于GPU-based AI system的研究也如火如荼。...在这些研究中,以提高资源利用率为主要目标的GPU共享(GPU sharing)是当下研究的热点之一。...本篇文章希望能提供一个对GPU共享工作的分享,希望能和相关领域的研究者们共同讨论。限于笔者能力有限,可能会出现一些错漏,希望能多多指正,感谢。 GPU共享,是指在同一张GPU卡上同时运行多个任务。...池化简单来讲就是使用远程访问的形式使用GPU资源,任务使用本机的CPU和另一台机器的GPU,两者通过网络进行通信。也是因为这个原因,共享模块需要将CPU和GPU的调用分开。

    3.6K20

    CPU vs GPU:为什么GPU更适合深度学习?

    凭借其卓越的数据处理能力,深度学习使得计算机能够实现多种过去仅为人类所独有的认知智能。通常而言,深度神经网络的训练过程极其复杂,通常需要进行大量的并行计算。...流处理器是 GPU 的基本计算单元,它们并行处理大量的线程。 Tensor 核心架构: 专为深度学习设计的 Tensor 核心能够高效处理矩阵运算,加速神经网络的训练和推理。...— 05 —关于 GPU 应用于深度学习的一点思考 作为一种基于人工神经网络(ANN)的技术,深度学习能够从庞大的数据集中提取出高度精确的预测。...然而,随着深度学习的兴起,人们发现 GPU 不仅在图形处理上表现优异,其架构也非常适合执行需要大规模并行计算的任务,尤其是神经网络的训练。...例如,在深度学习中,矩阵运算是神经网络训练的核心操作,而矩阵运算本质上属于并行计算。GPU 的架构正好能够高效地执行这些并行计算任务,因此在处理大规模矩阵运算时,GPU 表现出了极大的优势。

    9110

    如何一步一步使用Pytorch与GPU训练深度神经网络

    Pytorch是python的一个目前比较火热的深度学习框架,Pytorch提供在GPU上实现张量和动态神经网络。对于学习深度学习的同学来说,Pytorch你值得拥有。...本文将介绍pytorch的核心张量与梯度,以及如何一步一步的使用GPU训练你的第一个深度神经网络。...创建神经网络 再简单看了一下张量和梯度后,接下来我们就要开始今天真正的主题:使用Pytorch创建我们的第一个深度神经网络。还是机器学习的老套路,建立一个深度学习模型依然是那几步。...在处理图像数据时,随着数据量的增加和网络层次的加深我们需要使用GPU来加速训练。GPU包含数百个内核,这些内核可以在短时间内对浮点数执行快速的矩阵运算,从而使训练多层深度神经网络成为可能。...在使用GPU时,我们可以使用torch.cuda.is_available命令来查看是否有可使用的GPU设备。

    3.7K20

    深度学习中喂饱GPU

    ---- 新智元推荐 来源:知乎专栏 作者:风车车 【新智元导读】深度学习模型训练是不是大力出奇迹,显卡越多越好?非也,没有512张显卡,也可以通过一些小技巧优化模型训练。...,但是 gpu 的使用率非常低,这基本可以确定瓶颈是在 cpu 的处理速度上了。...后来查了一些资料发现 nvidia 有一个库叫 dali 可以用 gpu 来做图像的前处理,从输入,解码到 transform 的一整套 pipeline,看了下常见的操作比如 pad/crop 之类的还挺全的...训练很不稳定,于是直接照搬了 dali 官方的 dataloader 过来,速度也是同样起飞 hhhh(找不到当时训练的图片了),然后再配合 apex 的混合精度和分布式训练,申请 4 块 v100,gpu...使用率可以稳定在 95 以上,8 块 v100 可以稳定在 90 以上,最后直接上到 16 张 v100 和 32cpu,大概也能稳定在 85 左右(看资源使用率发现 cpu 到顶了,不然估计 gpu

    1.8K20

    深度神经网络

    深度神经网络不仅可以根据算法工作,而且可以预测任务的解决方案并利用其先前的经验得出结论。在这种情况下,您无需使用编程或编码来获得答案。 什么是深度神经网络? ?...神经网络深度神经网络之间有什么区别? 您可以使用计算机将神经网络与国际象棋进行比较。它具有算法,根据算法可以根据您的动作和行动来确定战术。...同时,例如,计算机可能能够向您和其他人学习,并且它可以成为一个深度神经网络。在一段时间内,与其他玩家一起玩,它会变得立于不败之地。 神经网络不是一个创新的系统,但是深度神经网络比第一个复杂得多。...神经网络需要特定的数据输入和解决方案算法,而深度神经网络可以在没有大量标记数据的情况下解决问题。 什么是深度学习神经网络?...这是深度神经网络如何工作的一个示例。对信息的创意和分析成分进行分析和分组,以确保正确识别对象。这些组件不会直接带到系统中,因此ML系统必须修改和派生它们。 什么是深度卷积神经网络

    42820

    利用GPU和Caffe训练神经网络

    【编者按】本文为利用GPU和Caffe训练神经网络的实战教程,介绍了根据Kaggle的“奥托集团产品分类挑战赛”的数据进行训练一种多层前馈网络模型的方法,如何将模型应用于新数据,以及如何将网络图和训练权值可视化...---- Caffe是由贾扬清发起的一个开源深度学习框架,它允许你利用你的GPU训练神经网络。...相对于其他的深度学习框架如Theano或Torch等,Caffe不需要你自己编写算法程序,你只需要通过配置文件来指定网络。显然,这种做法比自己编写所有程序更加节省时间,也将你限制在一定的框架范围内。...设置 如果你还没有把Caffe安装在你的系统上,我建议在一个允许GPU处理的EC2实例上工作,例如g2.2xlarge实例。...这绝对是高性能深度学习的好工具。如果你想要做图像处理和卷积神经网络,我建议你看看NVIDIA DIGITS,它会为你提供一个舒适的GUI来实现目标。

    79350

    利用GPU和Caffe训练神经网络

    本文为利用GPU和Caffe训练神经网络的实战教程,介绍了根据Kaggle的“奥托集团产品分类挑战赛”的数据进行训练一种多层前馈网络模型的方法,如何将模型应用于新数据,以及如何将网络图和训练权值可视化。...---- Caffe是由贾扬清发起的一个开源深度学习框架,它允许你利用你的GPU训练神经网络。...相对于其他的深度学习框架如Theano或Torch等,Caffe不需要你自己编写算法程序,你只需要通过配置文件来指定网络。显然,这种做法比自己编写所有程序更加节省时间,也将你限制在一定的框架范围内。...设置 如果你还没有把Caffe安装在你的系统上,我建议在一个允许GPU处理的EC2实例上工作,例如g2.2xlarge实例。...这绝对是高性能深度学习的好工具。如果你想要做图像处理和卷积神经网络,我建议你看看NVIDIA DIGITS,它会为你提供一个舒适的GUI来实现目标。

    1.2K100

    深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用

    GPU有强大的计算能力,适合于加速深度神经网络训练。DNN的单机多GPU数据并行框架是腾讯深度学习平台的一部分,腾讯深度学习平台技术团队实现了数据并行技术加速DNN训练,提供公用算法简化实验过程。...神经网络具有模拟任何分布的能力,深度神经网络比浅层神经网络表达能力更强,它模拟了人脑的深层结构,能够更准确地“理解”事物的特征。因此相较于其他方法,深度神经网络可以更为准确地模拟声学模型和语言模型。...这里将深度神经网络应用于语音识别中的声学模型建模。...本文描述了多GPU加速深度神经网络训练系统的数据并行实现方法及其性能优化,依托多GPU的强大协同并行计算能力,结合数据并行特点,实现快速高效的深度神经网络训练。...7.结论 本文描述了深度神经网络DNN的多GPU数据并行框架,通过多个Worker Group实现了数据并行,设计线形拓扑解决了参数交换性能瓶颈,实现了数据并行场景下的近似自适应学习率算法。

    1.5K71
    领券